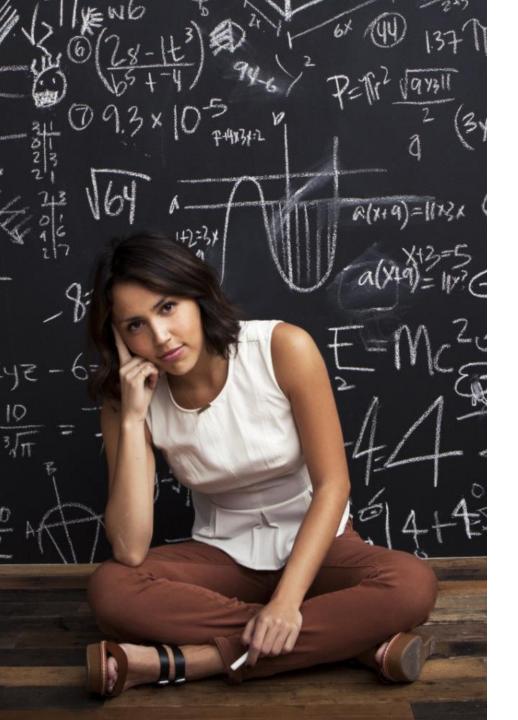
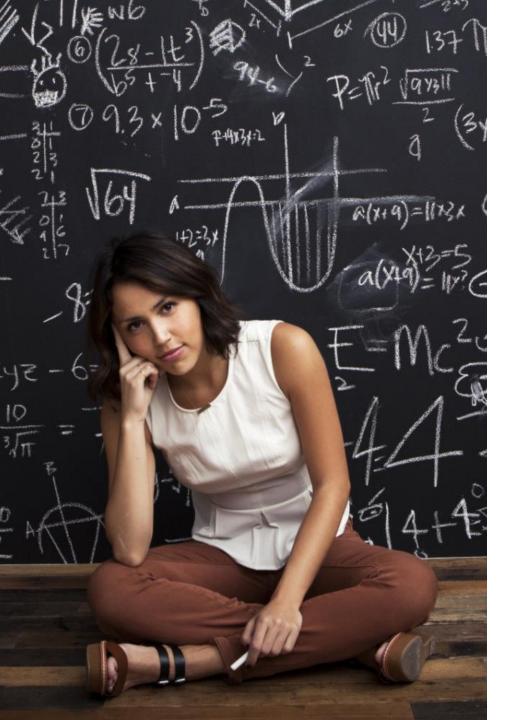
Adapting to the Modeling Revolution: A Guide to SEM & HLM

Lisa Fitton, Dr. Autumn McIlraith, Jessica Hooker, Dr. Nicole Sparapani, Dr. Carla Wood, & Dr. Suzanne Adlof



Disclosures

The authors have no conflicts of interest to report.



Outline

Introduction (Dr. Carla Wood)

Foundation of Statistics (Jessica Hooker)

Overview of Structural Equation Modeling (Dr. Nicole Sparapani)

Overview of Hierarchical Linear Modeling (Dr. Autumn McIlraith)

Valuing Variance in Data Collection (Lisa Fitton)

Discussion (Dr. Suzanne Adlof)

"No Field Left Behind"

High stakes competition for external funding

Multi-disciplinary nature of language and literacy research

Diversity of methods

■Variety of different lenses, angles

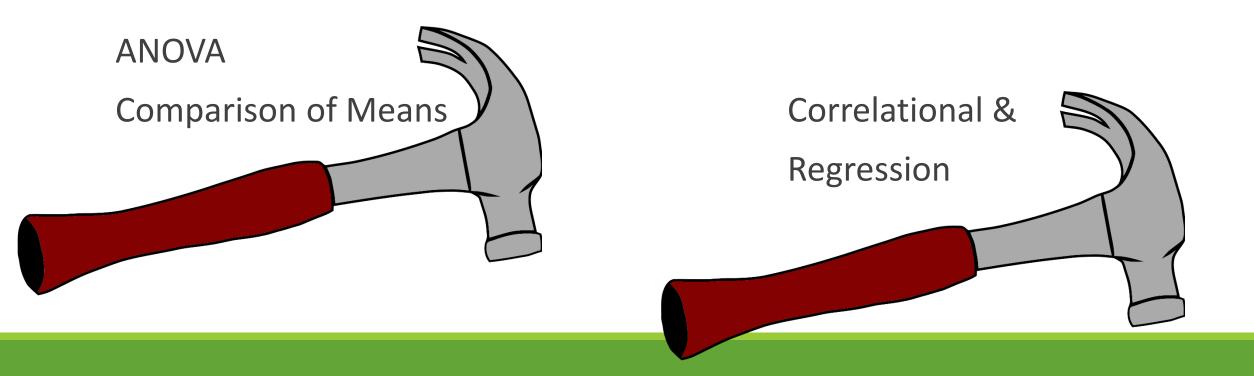
Strengthens confidence in findings

Next-generation scholars must be **good consumers and producers of research**, including a variety of rigorous research methods

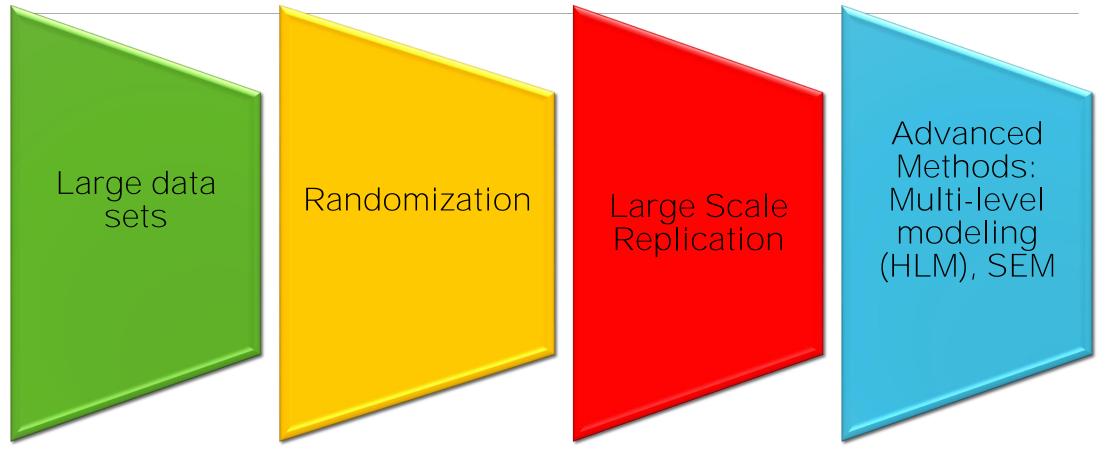
"Who Moved My Cheese?"

....Modeling Revolution?

Traditional training often includes only a few hammers



Revolution in research practices includes national movement toward:



We examined 2 years of 10 journals in Language and Literacy Research

JOURNALS	DESCRIPTIVES
LSHSS JREE AJSLP JEP JSLHR Reading and Writing JCD RRQ JLD SSR	Average sample sizeProportion of different types of analysesThe extent to which random assignment and replication was utilized

Summary of Findings

LSHSS, AJSLP, JSLHR, CLD

Employed traditional methods (58-92% of the time)

- Descriptive data
- ANOVAs
- Regression analyses

Low proportion of advanced methods (8%)

Lower sample sizes on average

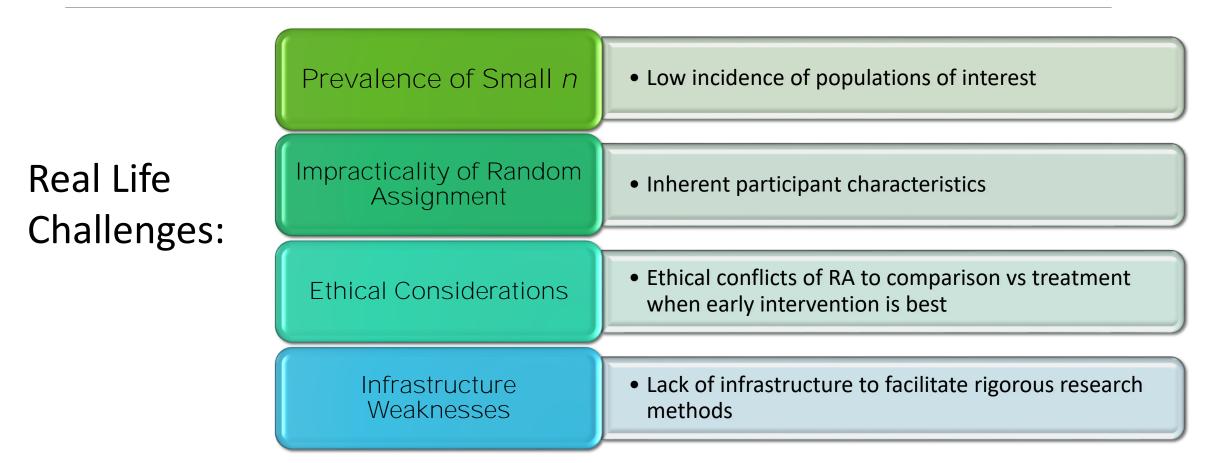
RRQ, RW, JLD, JREE, SSR, JEP

Employed advanced methods more often

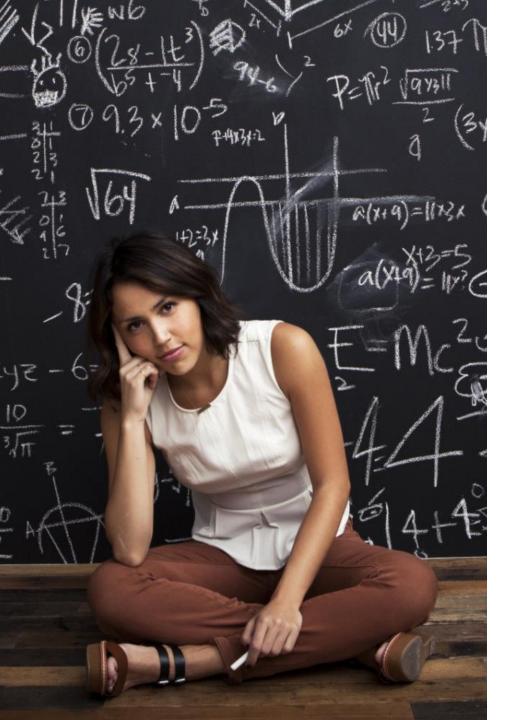
• Multi dimensional methods

Included more than 50 participants

Research in our field must "keep up" with changing times and *rigor*



- To be good consumers and producers of a diverse range of methods we want to strive to....
 - de-mystify advanced methods
 - build infrastructure for rigorous research
 - promote accessible continuing education



Outline

Introduction (Dr. Carla Wood)

Foundation of Statistics (Jessica Hooker)

Overview of Structural Equation Modeling (Dr. Nicole Sparapani)

Overview of Hierarchical Linear Modeling (Dr. Autumn McIlraith)

Valuing Variance in Data Collection (Lisa Fitton)

Discussion (Dr. Suzanne Adlof)

FOUNDATIONAL STATISTICS

 $\Sigma \sigma^2 \mu \chi^2 \rho$

Jessica Hooker, M.S., CF-SLP Florida State University

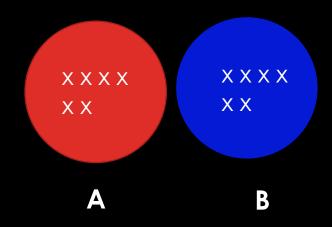
ω ξ B

An Important Distinction

VS

Observational Data

Intervention Data



CORRELATION: What it tells us

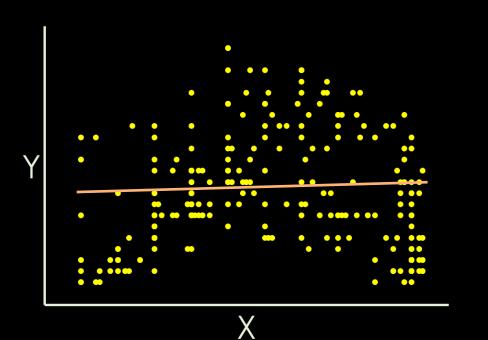
When X changes, does Y change in a consistent way across all of the changes in X?

> Assumptions Linearity Continuous Independence Normality Outliers

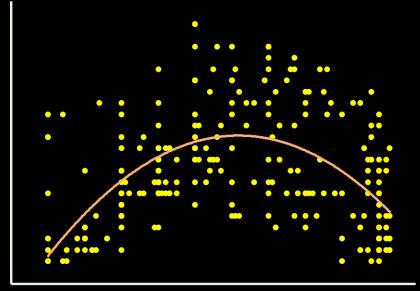
IQ

Language

CORRELATION: What it doesn't tell us



Performance

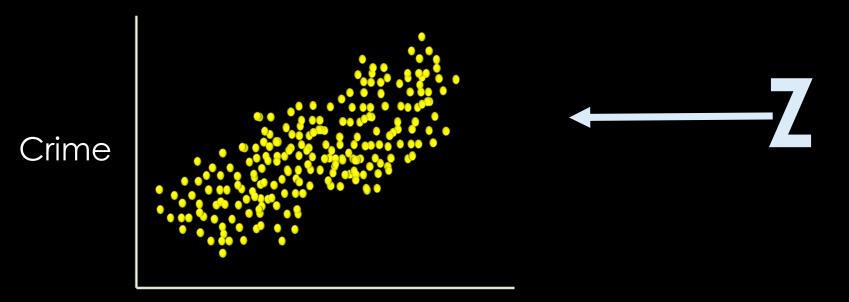


CORRELATION: What it doesn't tell us

IQ

IQ

CORRELATION: What it doesn't tell us



Ice Cream Sales

CORRELATION

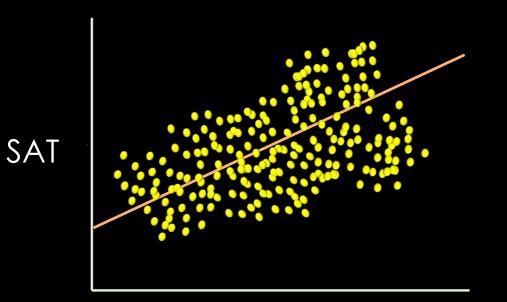
When it's helpful

- Preliminary examinations
- Previously established relationships
- Small samples

When it's not helpful

- Establishing causation
- Examining complex data
- Ruling out alternate explanations
- Non-linear relationships

REGRESSION: What it tells us



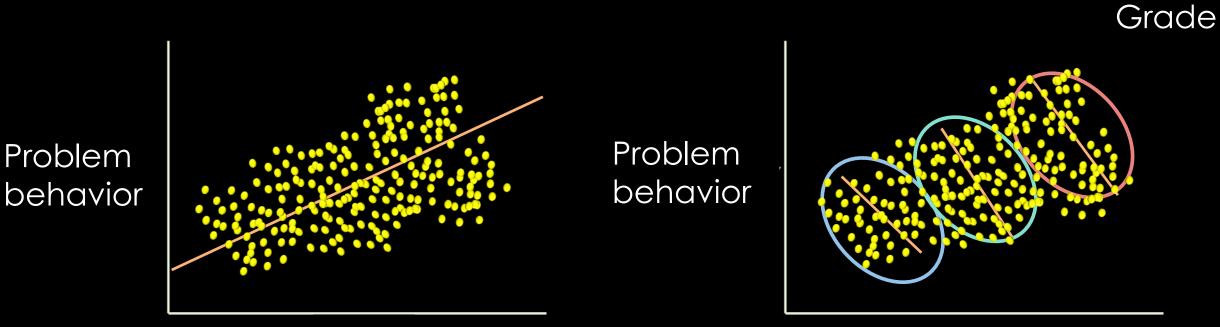
Can we use X to tell us something about Y?

Assumptions

Linearity Normality Independence

Language

REGRESSION: What it doesn't tell us



Age

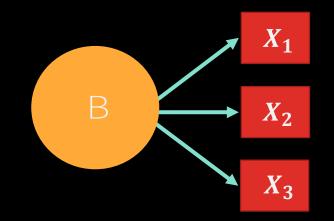
Age

REGRESSION: What it doesn't tell us

Measurement Error

Latent Variables

True Score = Observed Score + Error



REGRESSION

When it's helpful

- Confirming previously established relationships
- Establishing potential causality
- Identify unique contributors of variance
- Small samples

When it's not helpful

- Non-linear relationships
- The mean is not enough
- Measurement Error
- Latent variables
- Nested data structure

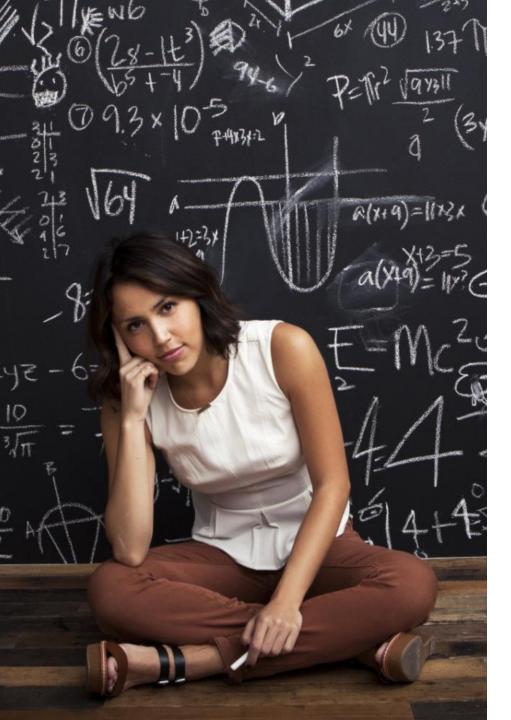
Assumptions

SAMPLE SIZE

Effect Size Model

IMAGE ATTRIBUTIONS

By Peter (Own work) [Watching the Skyline (http://creativecommons.org/licenses/by-sa/3.0/), via Wikimedia Commons



Outline

Introduction (Dr. Carla Wood)

Foundation of Statistics (Jessica Hooker)

Overview of Structural Equation Modeling (Dr. Nicole Sparapani)

Overview of Hierarchical Linear Modeling (Dr. Autumn McIlraith)

Valuing Variance in Data Collection (Lisa Fitton)

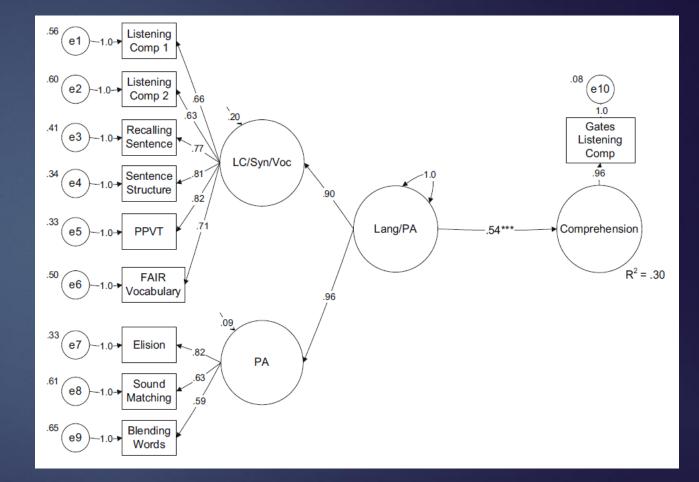
Discussion (Dr. Suzanne Adlof)

Introduction to Structural Equation Modeling

Nicole Sparapani, Ph.D., CCC-SLP Assistant Professor UC Davis School of Education, MIND Institute

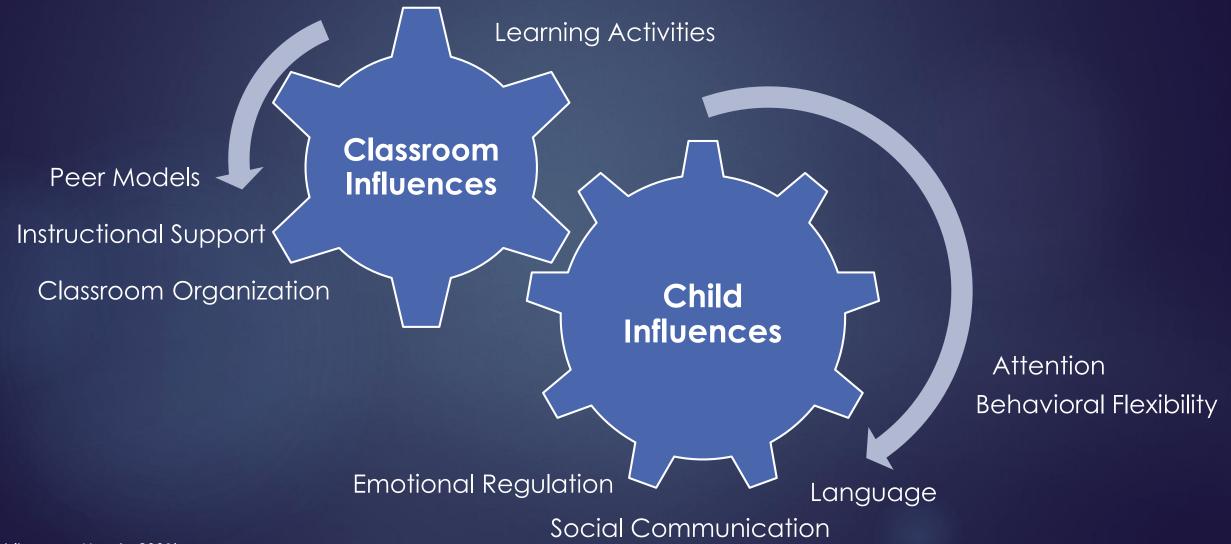
Learning Objectives

- What is Structural Equation Modeling (SEM)?
- What distinguishes SEM from other statistical techniques?
- What are the benefits of using SEM?



Foorman et al., 2015

Interest in understanding complex phenomena at one point in time or over a period of time



(Yoshikawa & Hsueh, 2001)

What are the dynamic relations among classroom organization, social communication, and emotional regulation?

Tommy

Emotional

Regulation

Mrs. B'<u>s class</u>

What are the dynamic relations among classroom organization, social communication, and emotional regulation?

Ms. H's class

Tommy

Why Use Structural Equation Modeling?

Structural equation modeling (SEM) is a statistical method that allows for the examination of **dynamic and interactive systems**—how each system interacts with and influences the other

Structural Equation Modeling (SEM)

- Fairly new statistical technique (1970) became popular in the 90s
 - Refers to a family of related procedures
- Two new ideas in the field emerged
 - Modeling of causal or predictive relations
 - Constructs represented by latent variables rather than observed variables

Combining these ideas led to 3 Major SEM techniques...

Path Analysis

Modeling causal or predictive relations among observed variables

Confirmatory Factor Analysis (CFA)

Modeling of non-causal (i.e., correlational) relations among latent variables

Latent Variables

Structural Equation Modeling (SEM)

Modeling of causal or predictive relations among latent variables

What is a latent variable??

Observed variables: Actual scores from assessments

Variables for which we have collected scores and entered in the data file

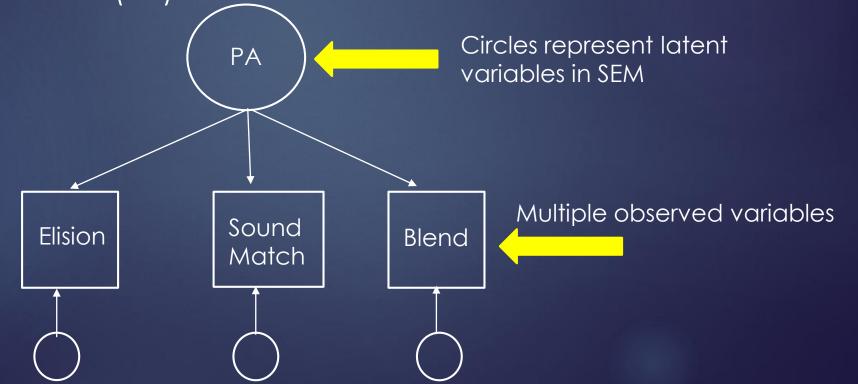
Example: PPVT test scores to measure receptive vocabulary

Squares represent observed variables in SEM

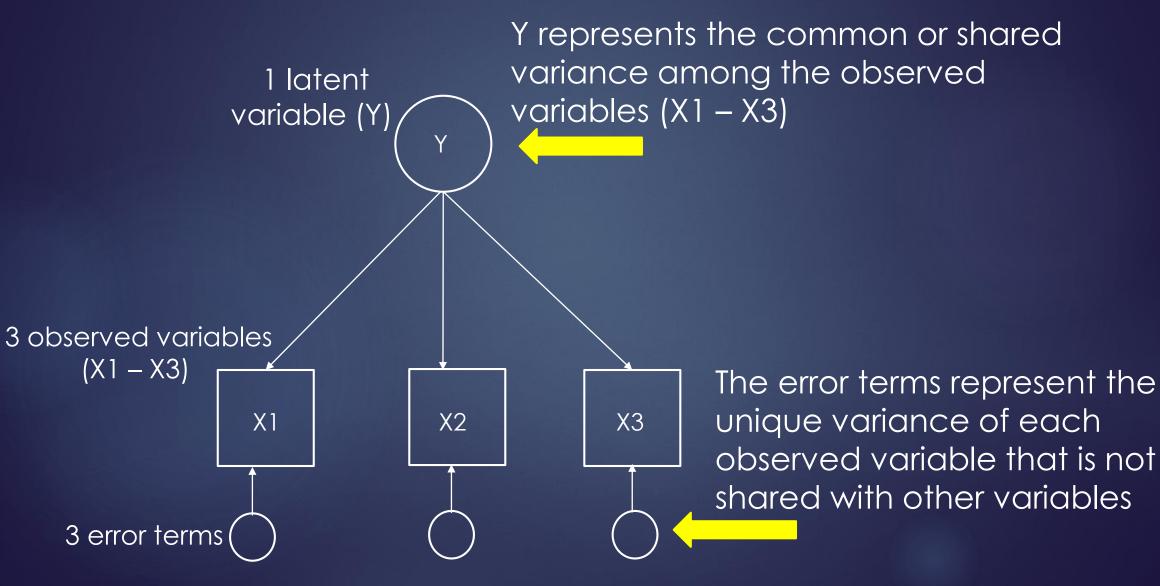
What is a latent variable??

Latent variables: Represent theoretical constructs of interests

- Consists of multiple observed variables
 - Example: Multiple assessments and/or scores to measure phonological awareness skills (PA)



What is a latent variable?



Confirmatory Factor Analysis (CFA)

EXAMPLE. Sparapani, N, Morgan, L., Reinhardt, V., Schatschneider, C., & Wetherby, A.M. (2016). Evaluation of classroom active engagement in elementary students with autism spectrum disorder. Journal of Autism and Developmental Disorders, 1–15

Examined the components that comprised Classroom Active Engagement in children with ASD

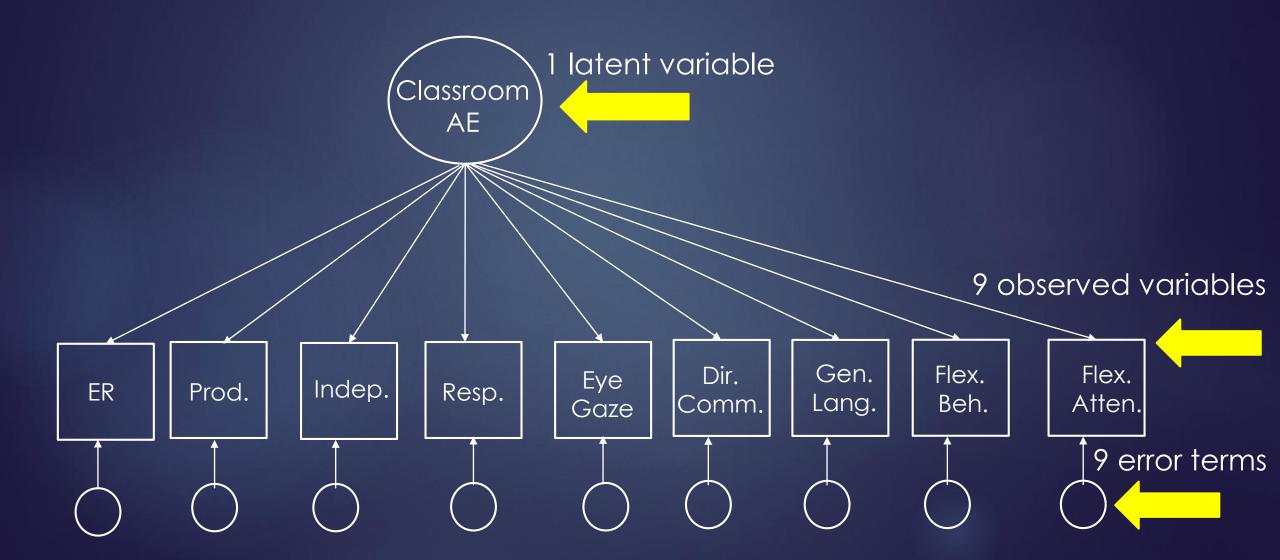
- Classroom video observations (PI: Wetherby)
- 196 students with ASD (126 teachers)
- Kindergarten–2nd grade

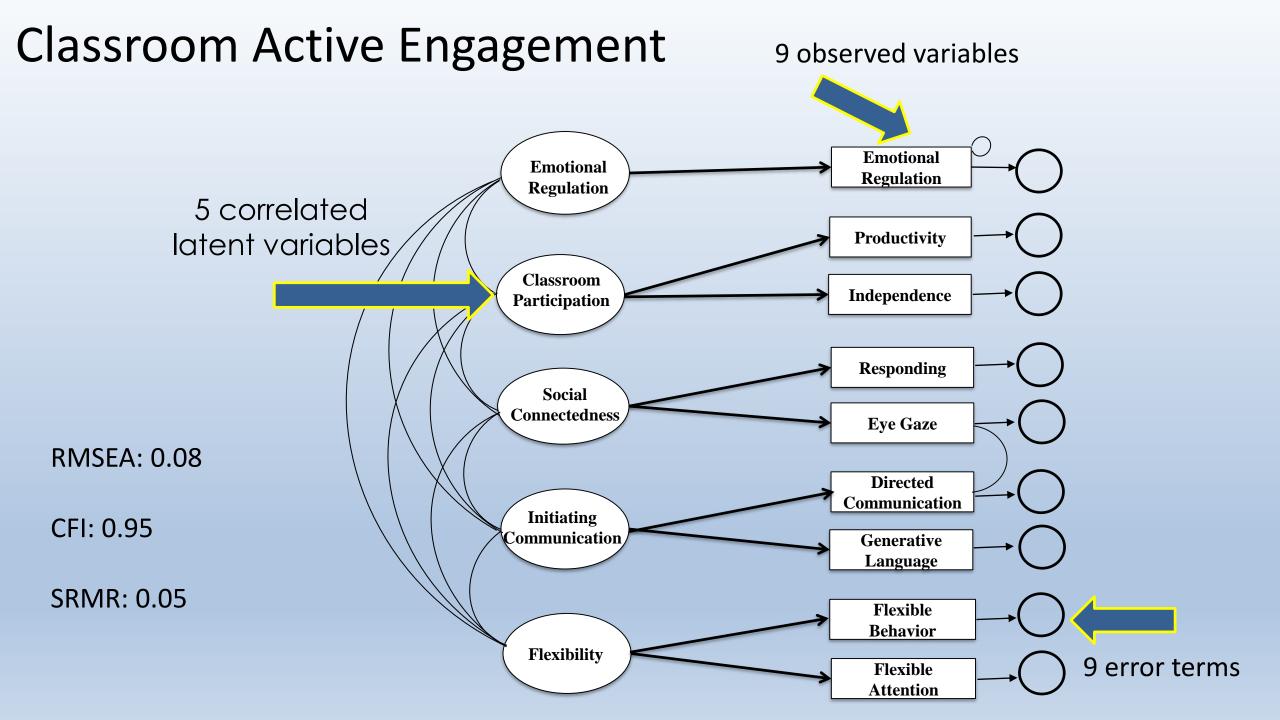
What is the latent factor structure of Classroom Active Engagement?

9 Observed Variables

- Emotional Regulation (ER)
- Productivity
- Independence
- Responding
- Eye Gaze
- Directed Communication
- Generative Language
- Flexible Behavior
- Flexible Attention

Examining the latent factor structure of Classroom Active Engagement?





Summary

Confirmatory Factor Analysis

Evaluate the factor structure of Classroom Active Engagement

Support for a multi-component observational tool

 Classroom Active Engagement
 9 observed variables that comprise 5 latent variables (factors)

Emotional Regulation

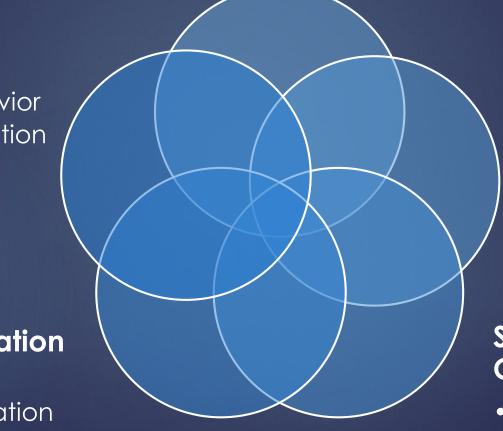
• Emotional Regulation

Flexibility

- Flexible Behavior
 Elevible Attention
- Flexible Attention

Initiating Communication

- Directed Communication
- Generative Language



Classroom Participation

- Productivity
- Independence

Social Connectedness

RespondingEye Gaze

About Sample Size

SEM requires fairly large samples

Increase model complexity = increase sample

Small samples may be problematic

- Smaller samples may not be normally distributed
- Results may not be accurate

Consider the N:q rule (sample size to parameter ratio)

- 20:1 (N = 400, parameters = 20)
- 10:1 frequently observed

▶ 5:1 (as ratio falls, so does trustworthiness of results...)

Benefits of Using SEM

Flexibility. SEM "thinks" about research problems the way researchers do (test theoretical models)

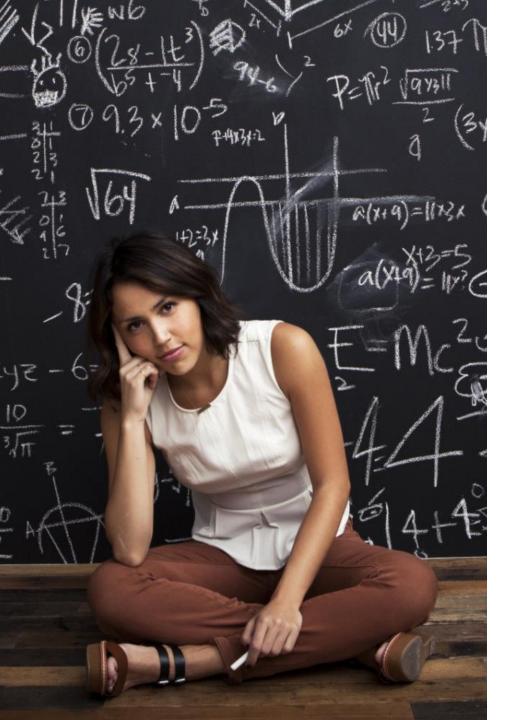
Constructs measured using latent variables rather than a single observed variable

Explains as much variance as possible with the measurement model

Simultaneously tests relations among variables while taking into account measurement error

Questions

Njsparapani@ucdavis.edu



Outline

Introduction (Dr. Carla Wood)

Foundation of Statistics (Jessica Hooker)

Overview of Structural Equation Modeling (Dr. Nicole Sparapani)

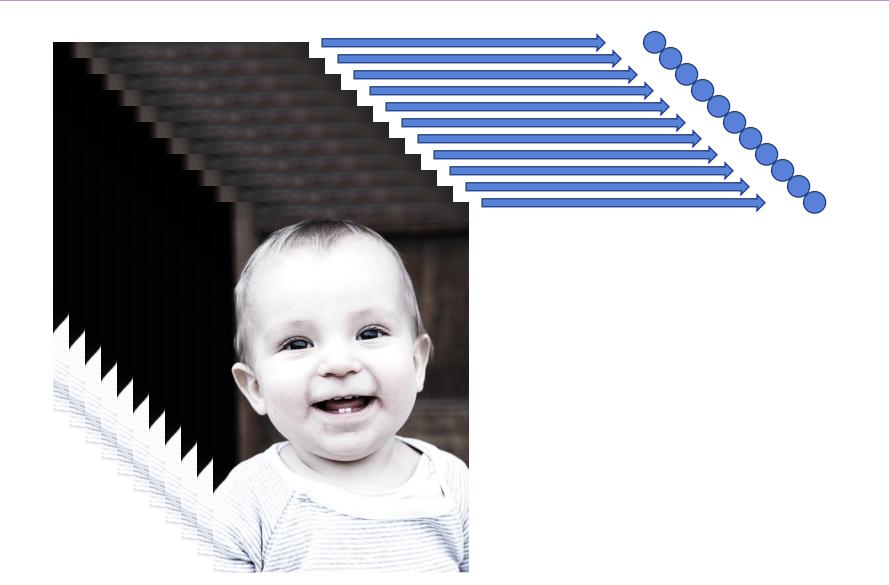
Overview of Hierarchical Linear Modeling (Dr. Autumn McIlraith)

Valuing Variance in Data Collection (Lisa Fitton)

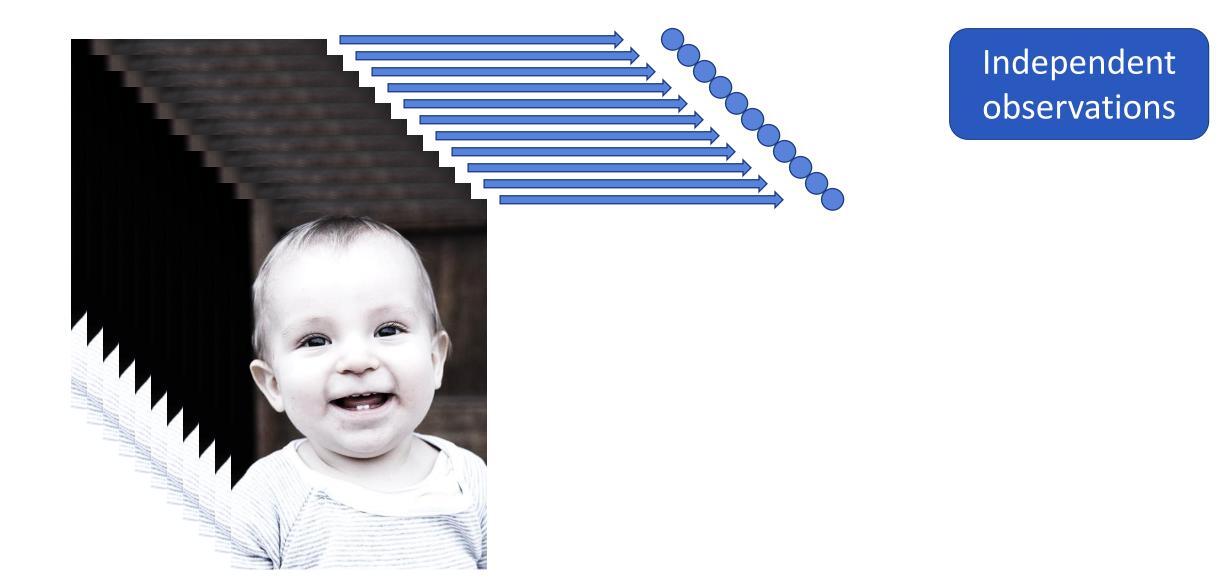
Discussion (Dr. Suzanne Adlof)

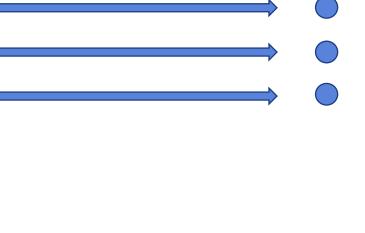
Overview of Hierarchical Linear Modeling (HLM)

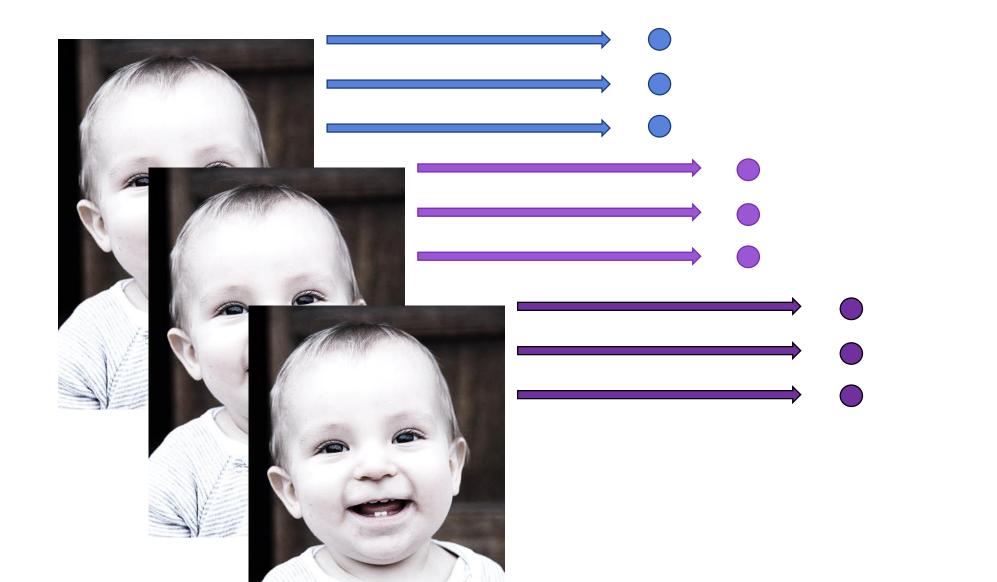
Autumn L. McIlraith, Ph.D. University of Houston



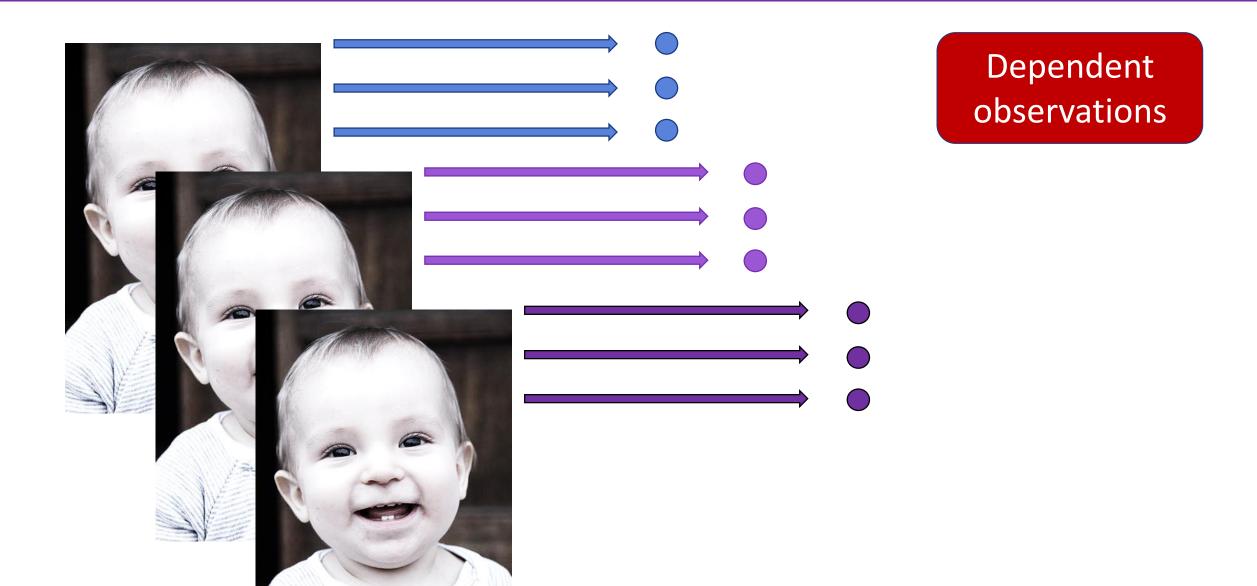
No HLM needed!



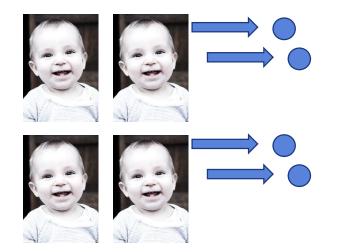




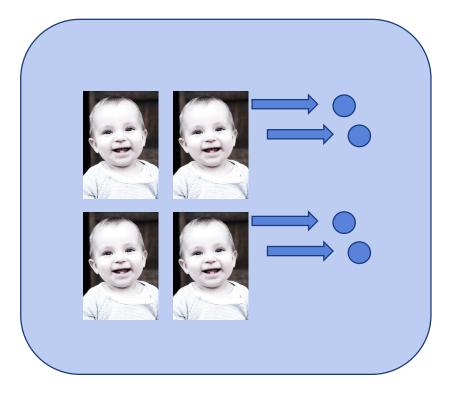
HLM is needed to account for dependency among observations



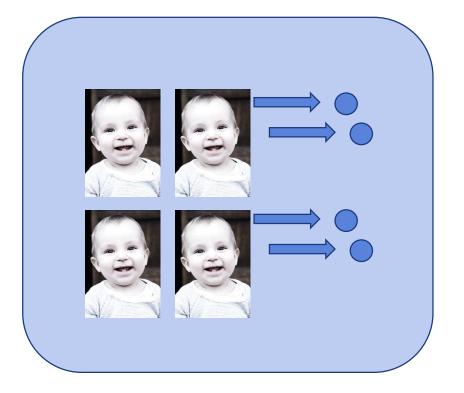
What about other kinds of dependency?

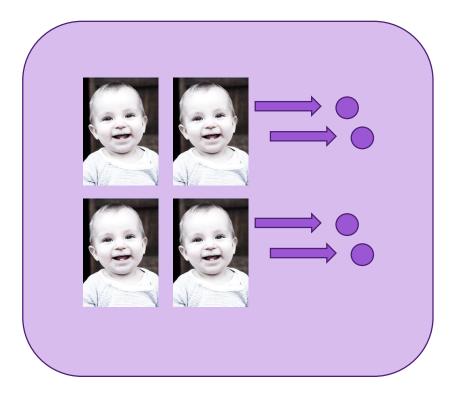


What about other kinds of dependency?

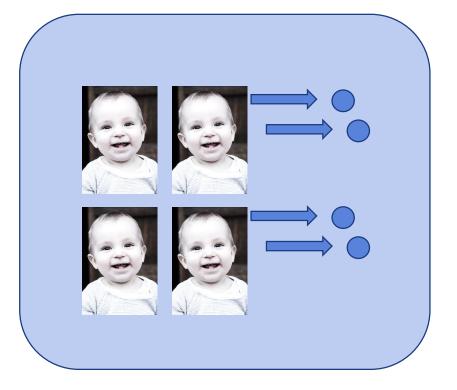


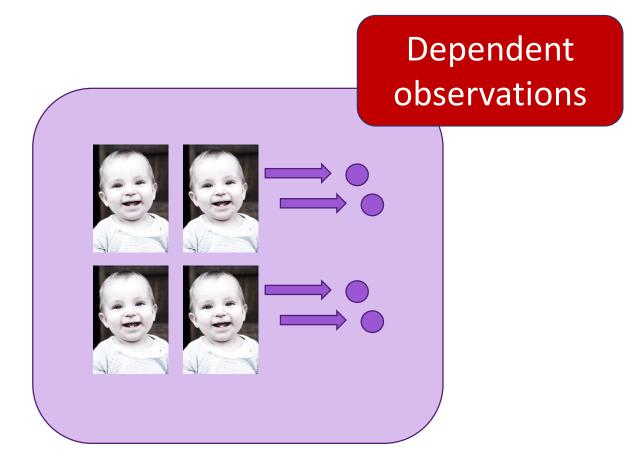
What about other kinds of dependency?

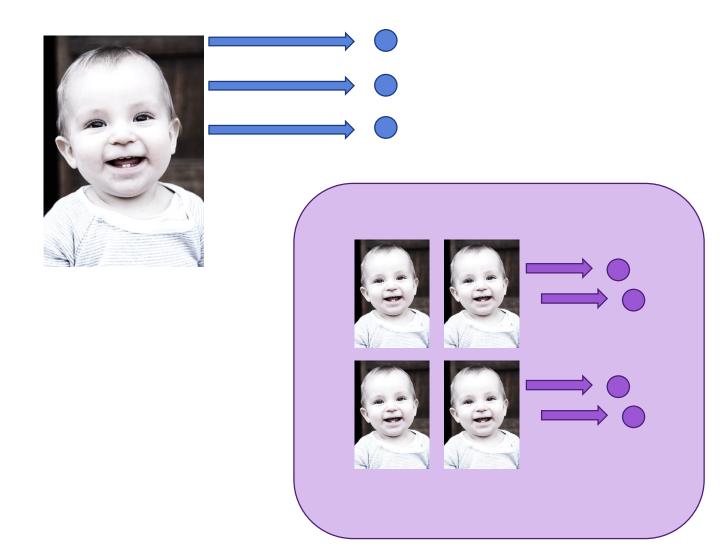


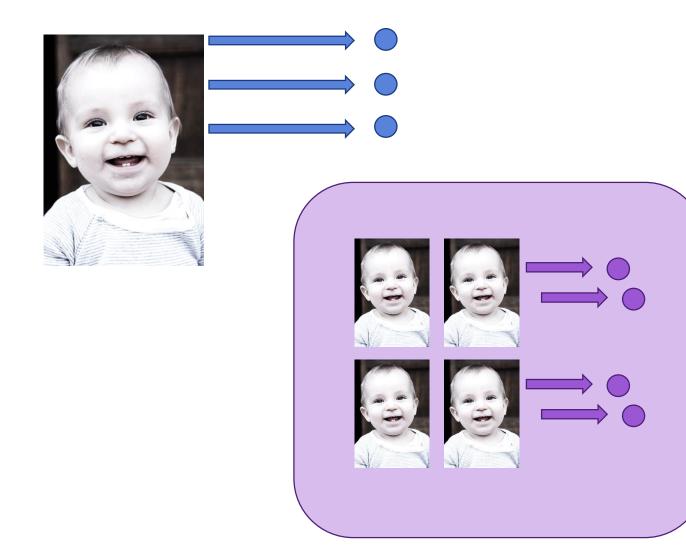


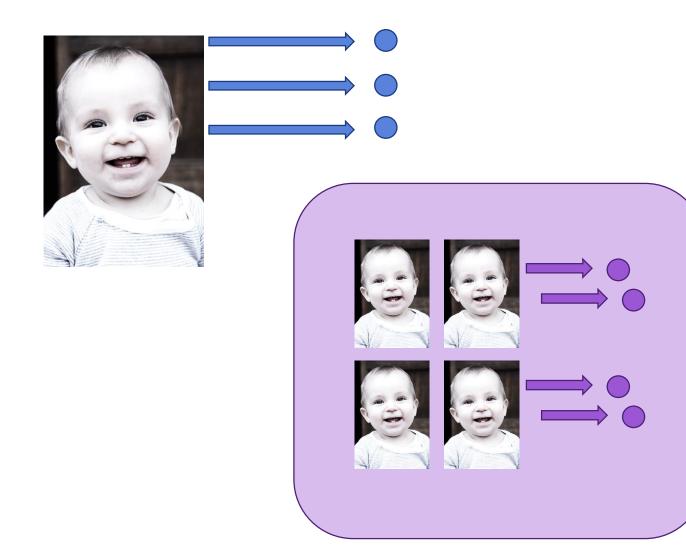
HLM works here too!

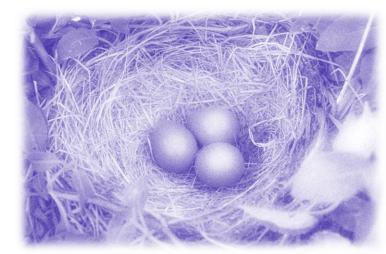












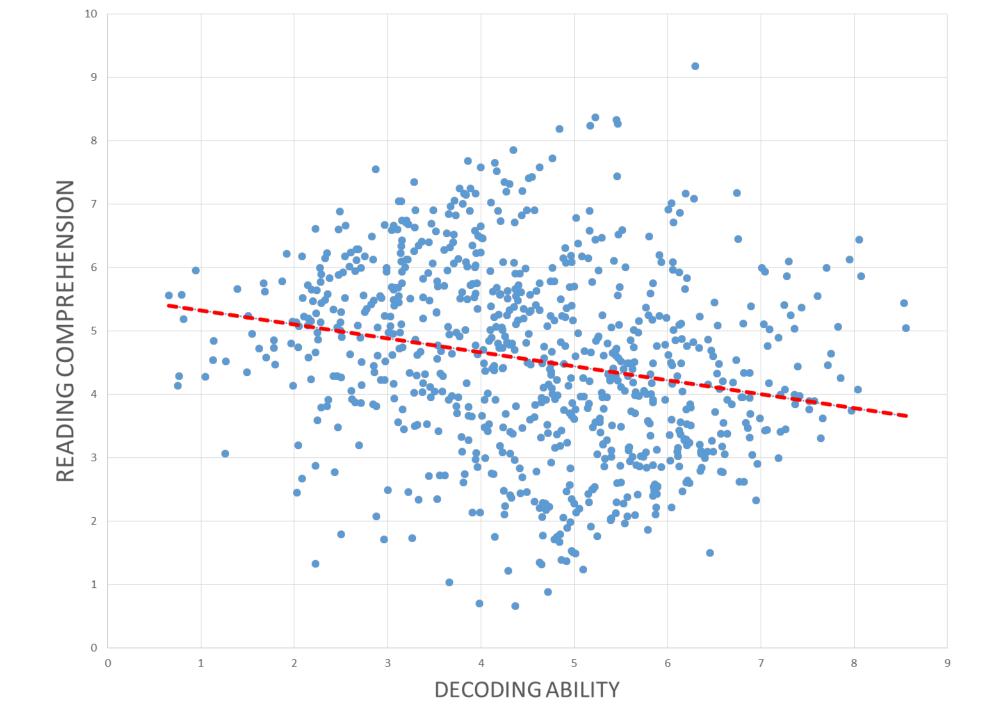
Why does dependency matter?

Why does dependency matter?

Violation of assumptions of many statistical tests

Can lead to inaccurate estimates of effects, less confidence in findings

Ignoring dependency can lead to 'masking' of real effects





Robust standard errors

Repeated Measures analyses (e.g., Repeated Measures ANOVA)

Hierarchical Linear Modeling

Robust standard errors

Repeated Measures analyses (e.g., Repeated Measures ANOVA)

Hierarchical Linear Modeling

- Useful when you do not have hypotheses about the larger clusters, only the individuals
- More conservative with determining statistical significance, but does not change the estimated effects themselves.

Robust standard errors

Repeated Measures analyses (e.g., Repeated Measures ANOVA)

Hierarchical Linear Modeling

Useful with balanced data, categorical predictors, observations nested within person, and little to no missing data

• Tends to oversimplify the raw data patterns

 Often requires numerous post-hoc pairwise comparisons

Robust standard errors

Repeated Measures analyses (e.g., Repeated Measures ANOVA)

Hierarchical Linear Modeling

- Can handle both categorical and continuous predictors
- Can handle unbalanced data, and missing data
- Can address hypotheses at the observation and cluster level

Robust standard errors

Repeated Measures analyses (e.g., Repeated Measures ANOVA)

Hierarchical Linear Modeling

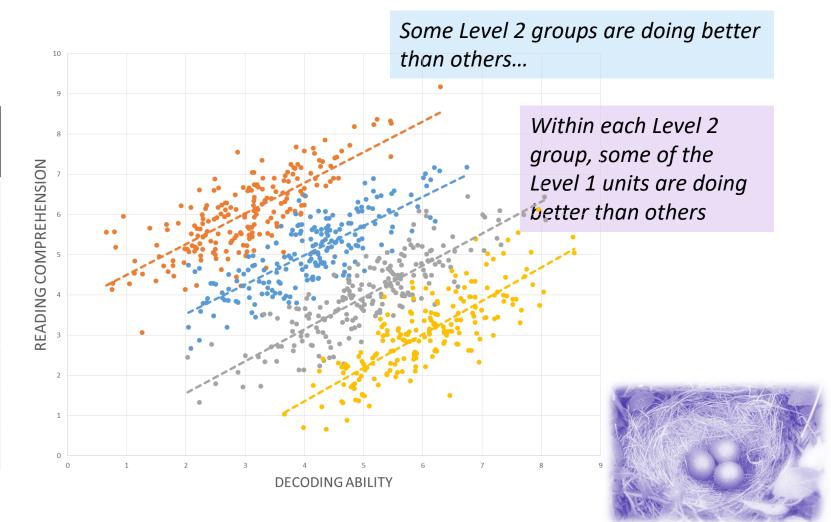
- Conceptually, very similar to HLM
- Uses latent factors
- Useful with larger sample sizes

Level 1 *nested within* level 2

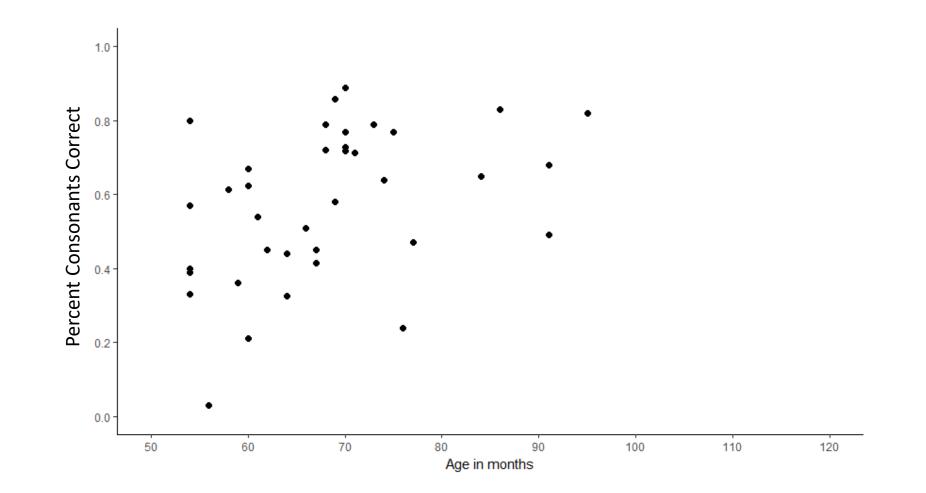
Level 1 ("micro")	Level 2 ("macro")
Participants	Classroom
Classrooms	School
Voters	District
Patients	Clinician
Time Points	Participant
Item responses	ltem
Item responses	Participant

Level 1 *nested within* level 2

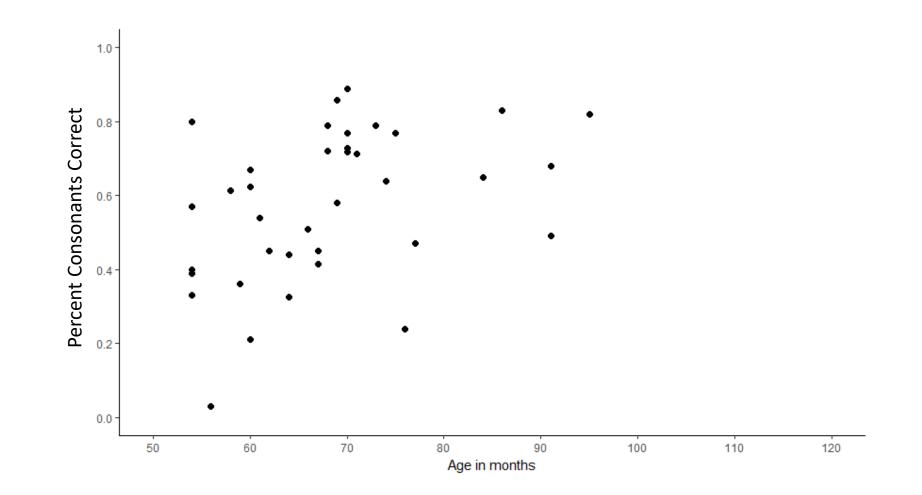
Level 1 ("micro")	Level 2 ("macro")
Participants	Classroom
Classrooms	School
Voters	District
Patients	Clinician
Time Points	Participant
Item responses	ltem
Item responses	Participant



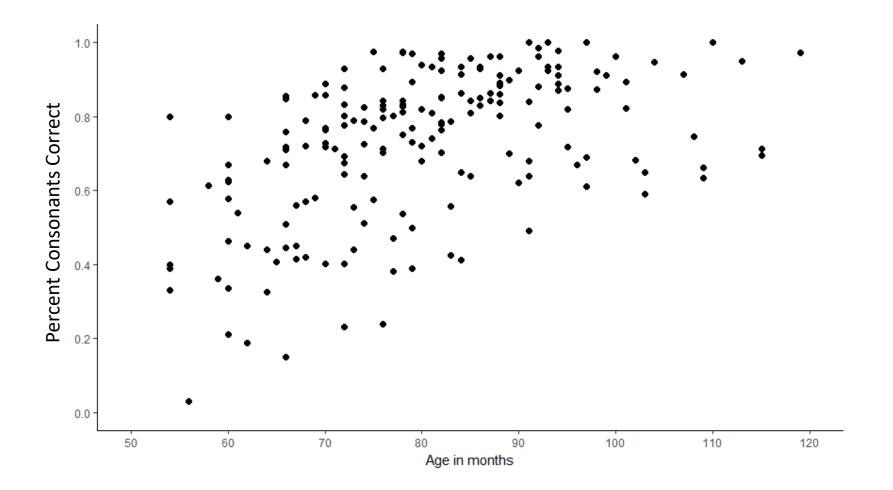
Let's look at some real data...



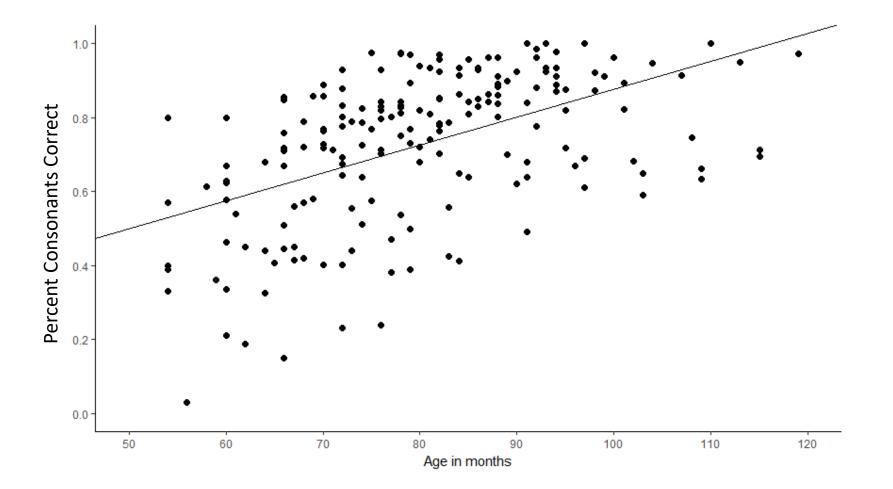
Scatterplot: Percent consonants correct (PCC), and age in months, for a sample of children with inconsistent speech sound errors



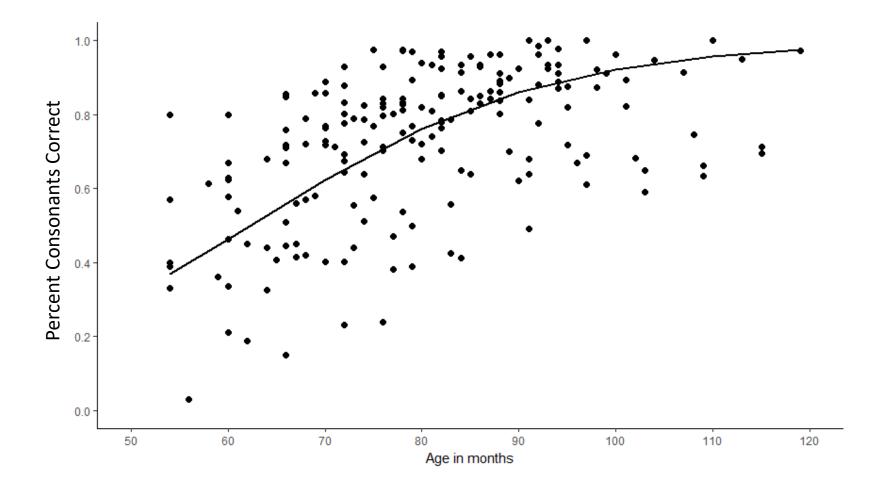
Measured at 5 different time points, separated by 6-month intervals

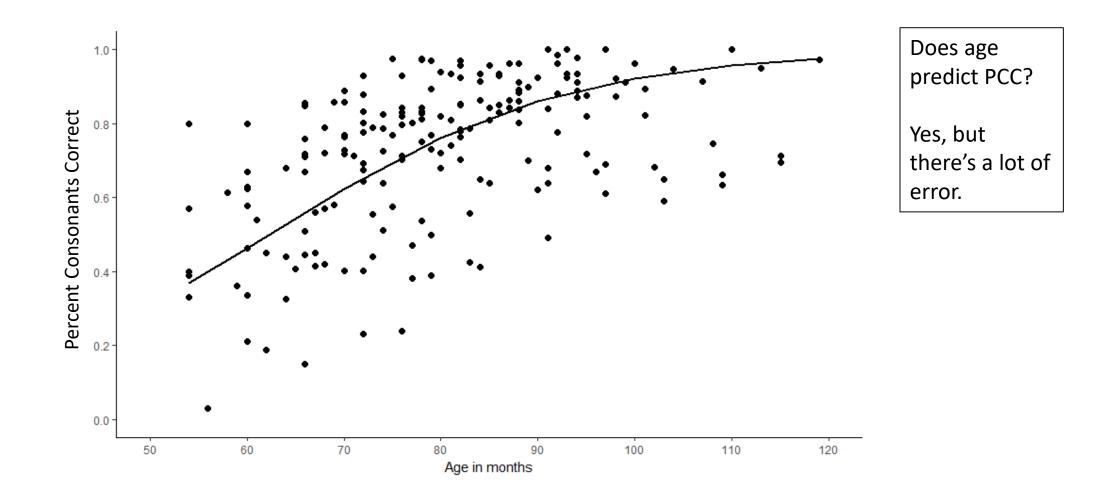


Linear model

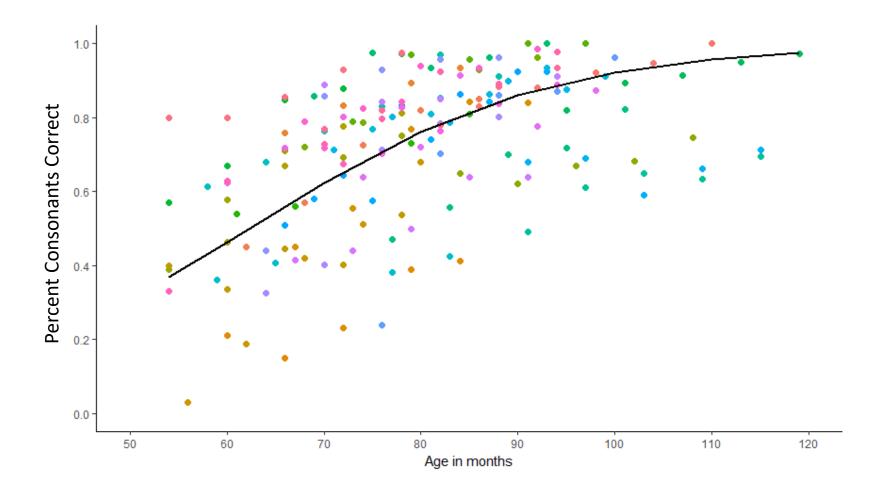


Non-linear model (bounded by 0% and 100%)

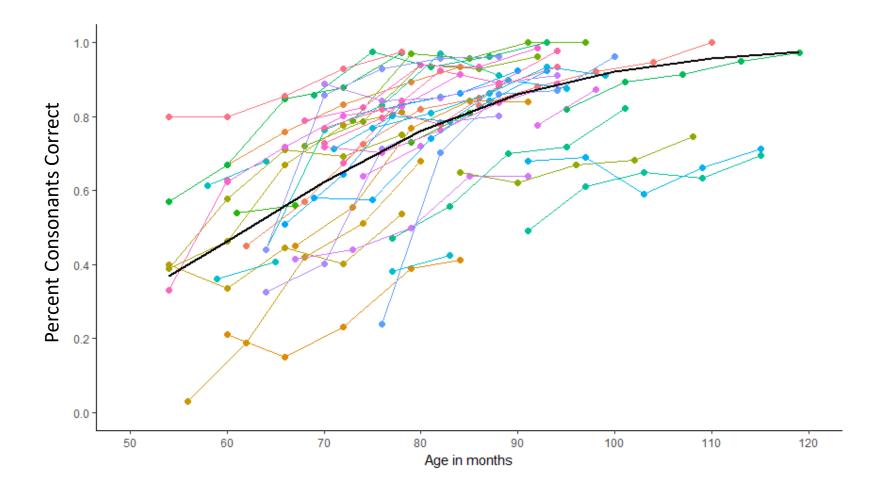




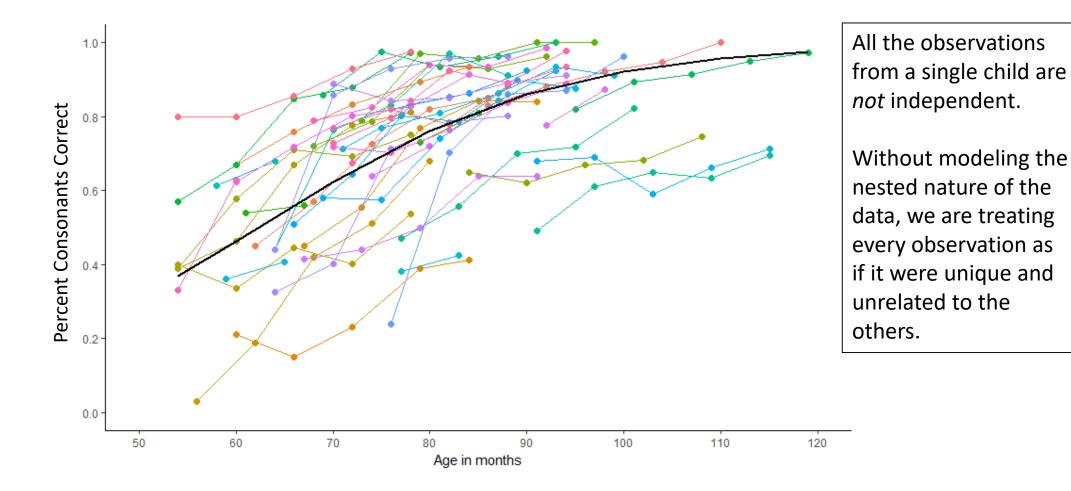
Color-coded by child

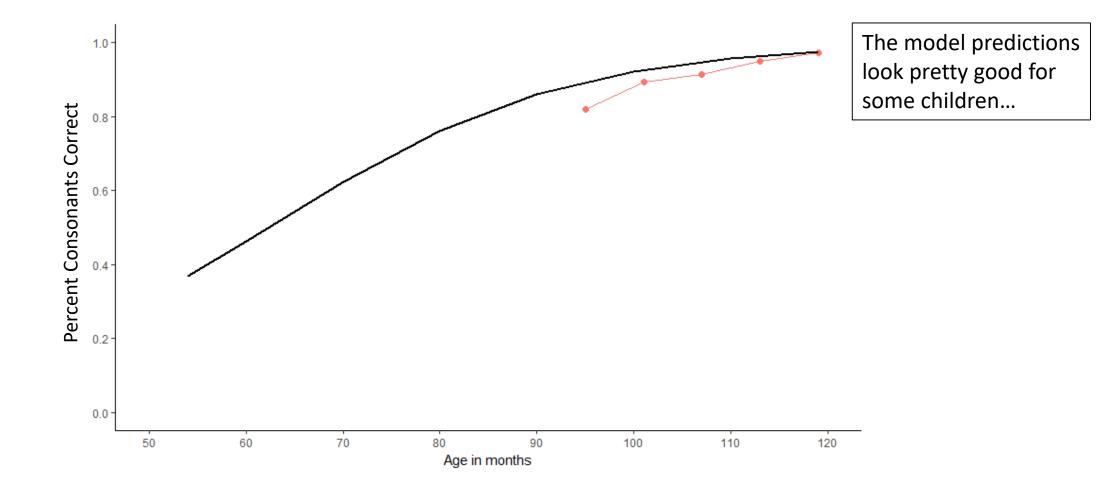


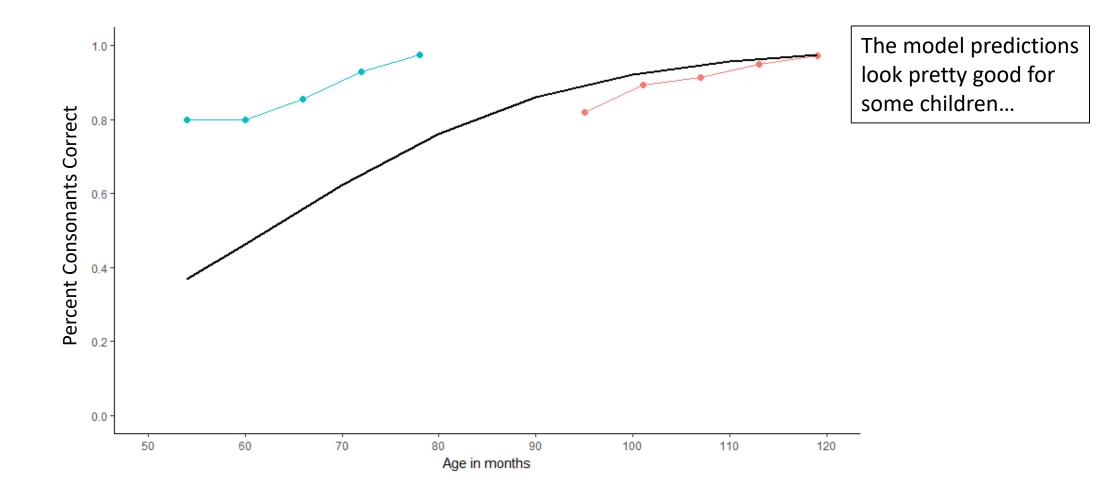
Color-coded by child

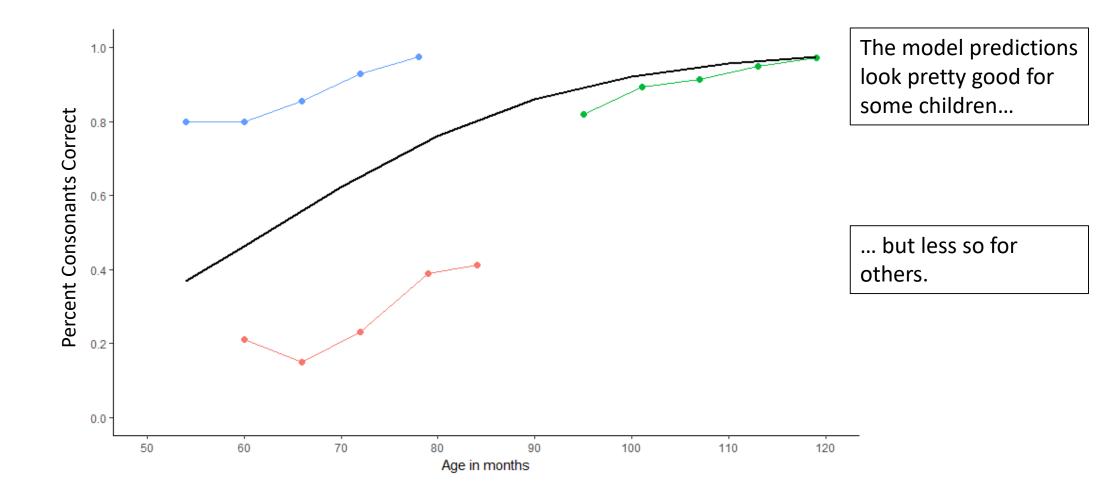


Color-coded by child

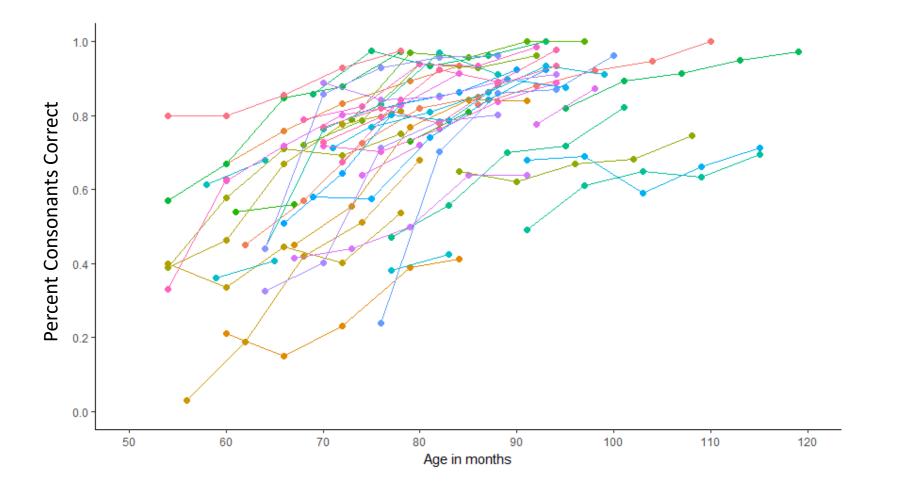




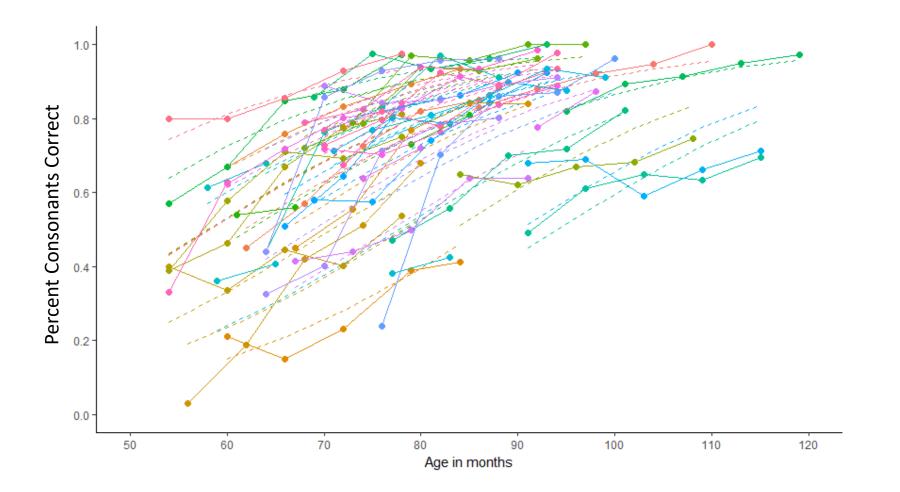


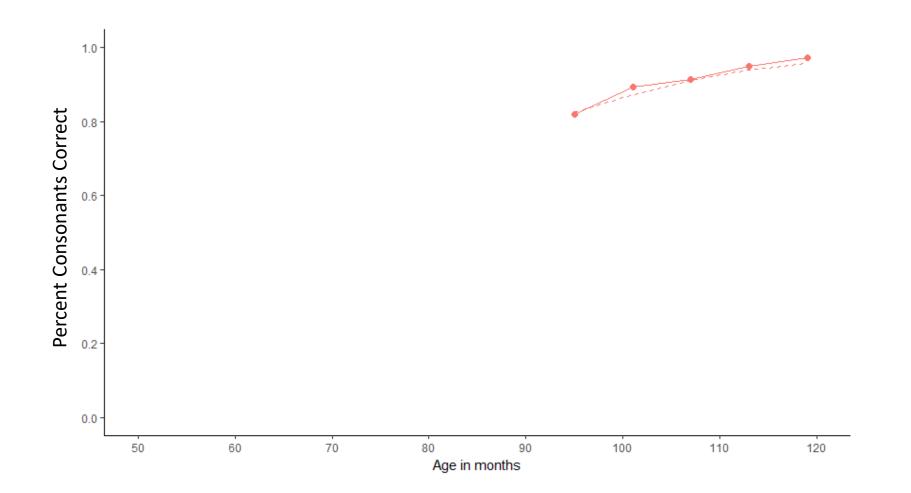


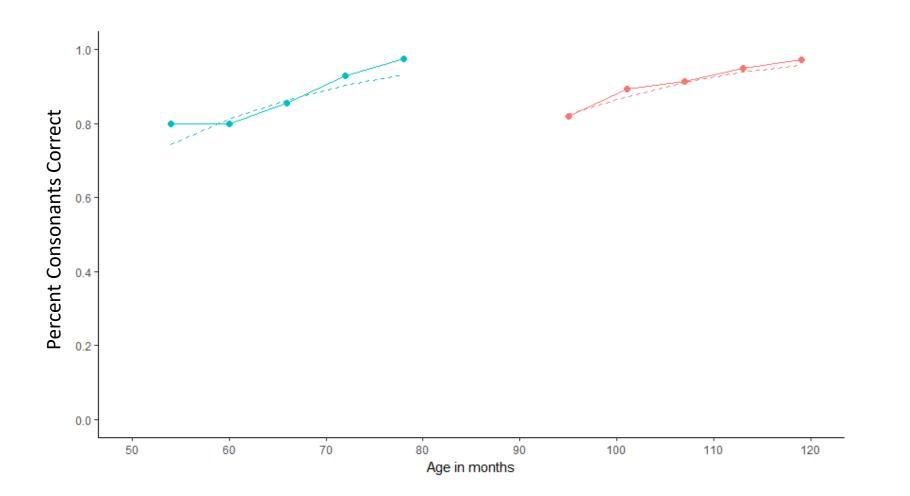
Now let's try HLM

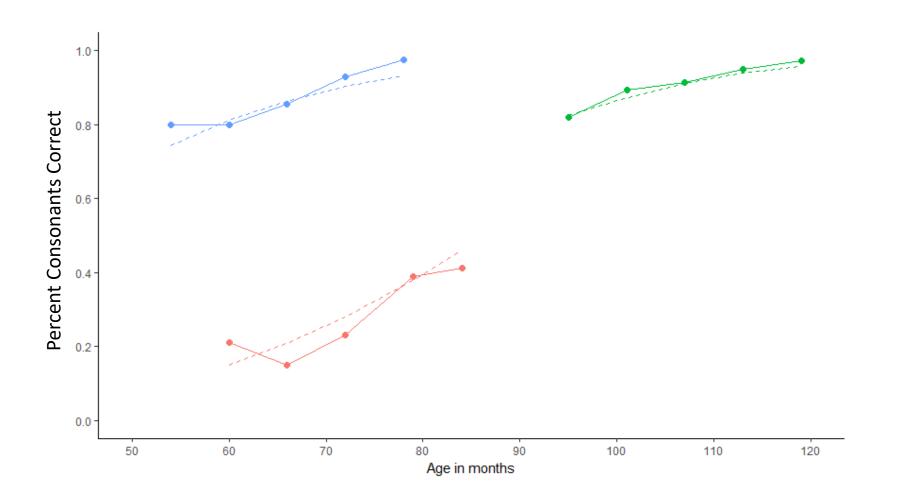


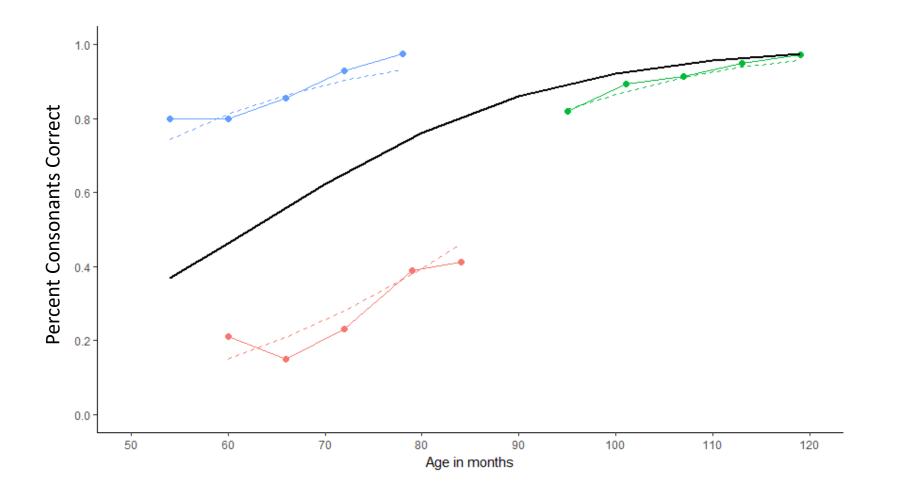
Each child gets their own predicted pattern of growth



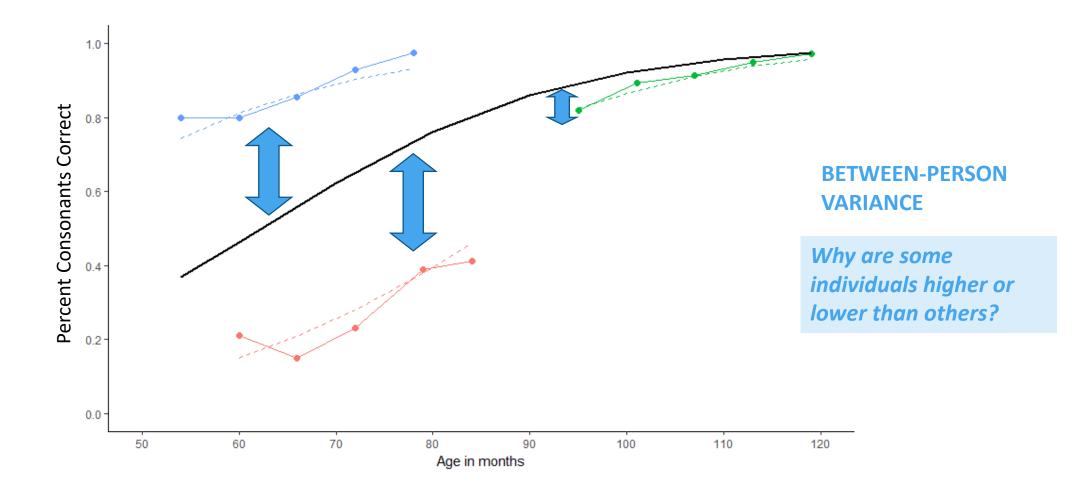




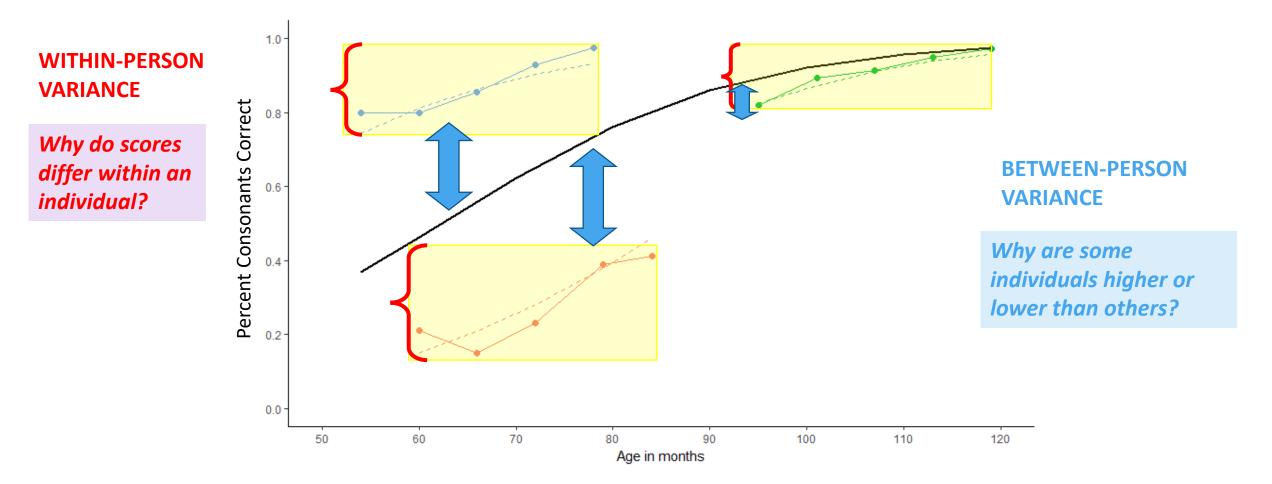




Two kinds of variance



Two kinds of variance



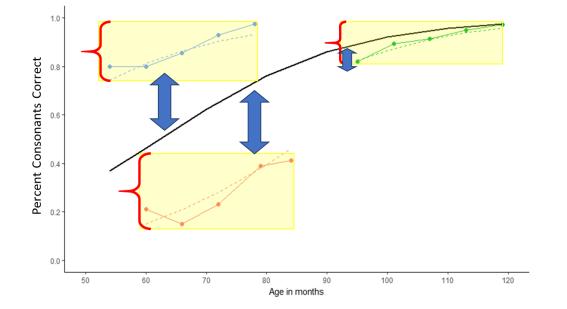
Two kinds of variance

WITHIN-PERSON VARIANCE

Why do scores differ within an individual?

In this model:

- Age explains change within individuals
- We could add other predictors that differ within the individual: vocabulary at each timepoint?



BETWEEN-PERSON VARIANCE

Why are some individuals higher or lower than others?

In this model:

 We could add treatment history, SES, home environment: any variable that differs between individuals.

A note on terminology

Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

A note on terminology

Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

Random effects

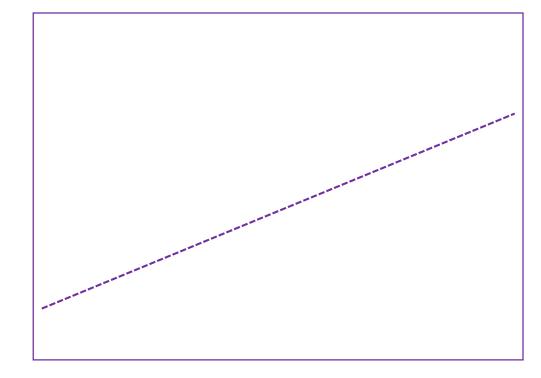
- Different for each Level-2 unit (vary 'randomly')
- Random intercept
 - Each Level 2 unit gets its own starting point
- Random slope
 - Each Level 2 unit gets its own rate of change/growth/etc.
- A predictor *can* have a random effect

Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

Random effects

- Different for each Level-2 unit (vary 'randomly')
- Random intercept
 - Each Level 2 unit gets its own starting point
- Random slope
 - Each Level 2 unit gets its own rate of change/growth/etc.
- A predictor *can* have a random effect



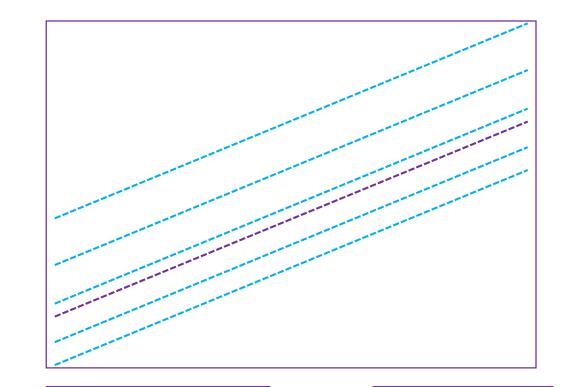
Fixed intercept - Fixed slope

Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

Random effects

- Different for each Level-2 unit (vary 'randomly')
- Random intercept
 - Each Level 2 unit gets its own starting point
- Random slope
 - Each Level 2 unit gets its own rate of change/growth/etc.
- A predictor *can* have a random effect



Fixed intercept

Random intercept

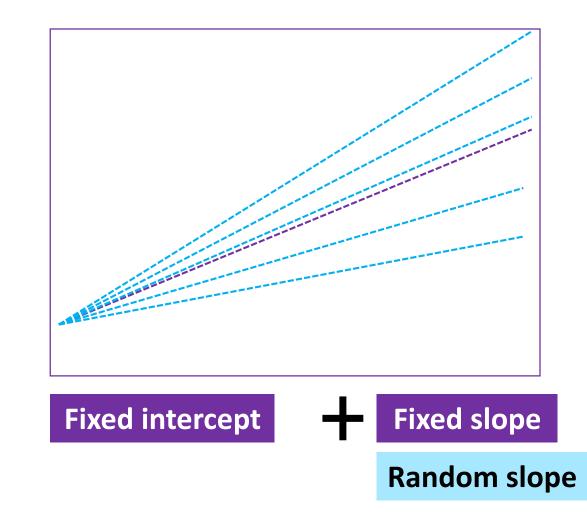
Fixed slope

Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

Random effects

- Different for each Level-2 unit (vary 'randomly')
- Random intercept
 - Each Level 2 unit gets its own starting point
- Random slope
 - Each Level 2 unit gets its own rate of change/growth/etc.
- A predictor *can* have a random effect

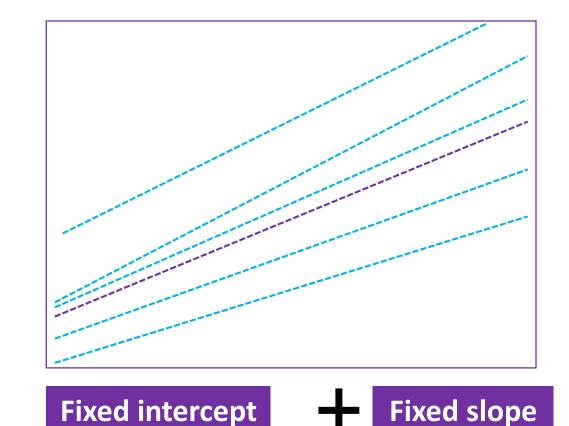


Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

Random effects

- Different for each Level-2 unit (vary 'randomly')
- Random intercept
 - Each Level 2 unit gets its own starting point
- Random slope
 - Each Level 2 unit gets its own rate of change/growth/etc.
- A predictor *can* have a random effect



Random slope

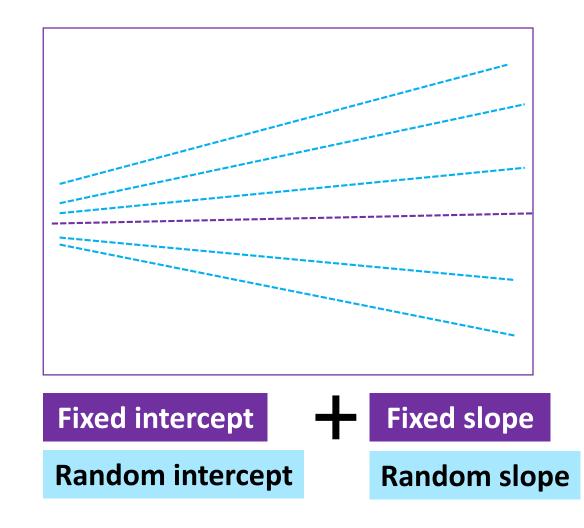
Random intercept

Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

Random effects

- Different for each Level-2 unit (vary 'randomly')
- Random intercept
 - Each Level 2 unit gets its own starting point
- Random slope
 - Each Level 2 unit gets its own rate of change/growth/etc.
- A predictor *can* have a random effect

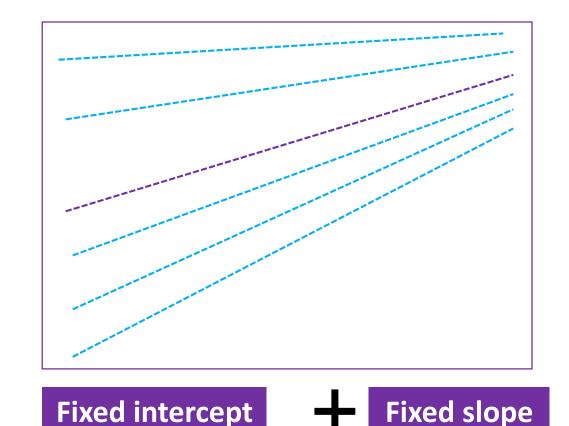


Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

Random effects

- Different for each Level-2 unit (vary 'randomly')
- Random intercept
 - Each Level 2 unit gets its own starting point
- Random slope
 - Each Level 2 unit gets its own rate of change/growth/etc.
- A predictor *can* have a random effect



Random slope

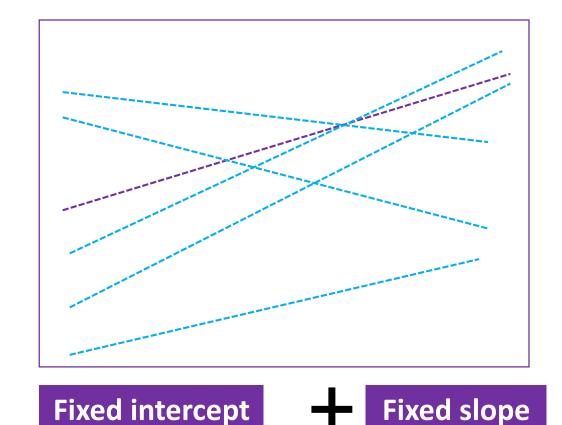
Random intercept

Fixed effects

- The same for everyone (a *fixed* value)
- Fixed Intercept
 - Overall starting point for everyone
- Fixed slope
 - Overall rate of change/growth/etc. for everyone
- A predictor *always* has a fixed effect

Random effects

- Different for each Level-2 unit (vary 'randomly')
- Random intercept
 - Each Level 2 unit gets its own starting point
- Random slope
 - Each Level 2 unit gets its own rate of change/growth/etc.
- A predictor *can* have a random effect



Random slope

Random intercept

What are your hypotheses? Are they about Level 1, or Level 2, or both?

Level 1 *nested within* level 2

Level 1 ("micro")	Level 2 ("macro")
Participants	Classroom
Classrooms	School
Voters	District
Patients	Clinician
Time Points	Participant
Item responses	Item
Item responses	Participant

What are your hypotheses? Are they about Level 1, or Level 2, or both?

Level 1 nested within level 2

Level 1 ("micro")	Level 2 ("macro")
Participants	Classroom
Classrooms	School
Voters	District
Patients	Clinician
Time Points	Participant
Item responses	Item
Item responses	Participant

What is your Level 1?

- How many Level 1 units total? How many within each larger unit?
- Do you have any Level 1 predictors?
- If you have timepoints as Level 1...
 - Do you have at least 3 timepoints per person?

What is your Level 2?

- How many Level 2 units do you have?
- What are your Level 2 predictors?

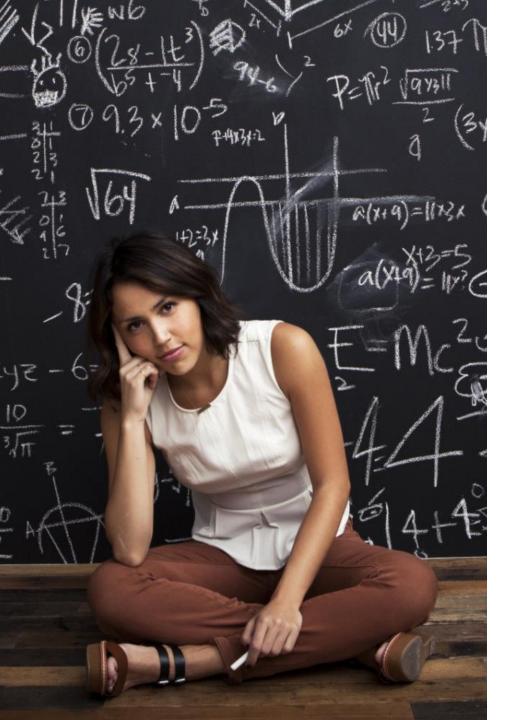
Is it more complicated than that?

- More than 2 levels?
- Crossed rather than nested?
- Non-normal outcome variable?

What to look for when reading a study that uses HLM

- Do the data have a nested structure?
- Are there at least 10 Level-2 units?
- How many models were examined, and why they were chosen?
- Were any variables centered? What kind of centering was used?
- Were there any outliers? How were they dealt with?
- How much missing data was there, and how was this addressed?
- What software was used? What estimation method was used? Did the model run properly?
- Are all parameter estimates provided for the interpreted models?
- Are standard errors or interval estimates provided?

Ferron, J., Hess, M. R., Hogarty, K. Y., Dedrick, R. F., Kromrey, J. D., Lang, T. R., & Niles, J. (April, 2004). *Hierarchical linear modeling: A review of methodological issues and applications.* Paper presented at the meeting of the American Educational Research Association, San Diego, CA.



Outline

Introduction (Dr. Carla Wood)

Foundation of Statistics (Jessica Hooker)

Overview of Structural Equation Modeling (Dr. Nicole Sparapani)

Overview of Hierarchical Linear Modeling (Dr. Autumn McIlraith)

Valuing Variance in Data Collection (Lisa Fitton)

Discussion (Dr. Suzanne Adlof)

The Value of Variance

Lisa Fitton, M.S., CCC-SLP Florida State University

The Value of Variance

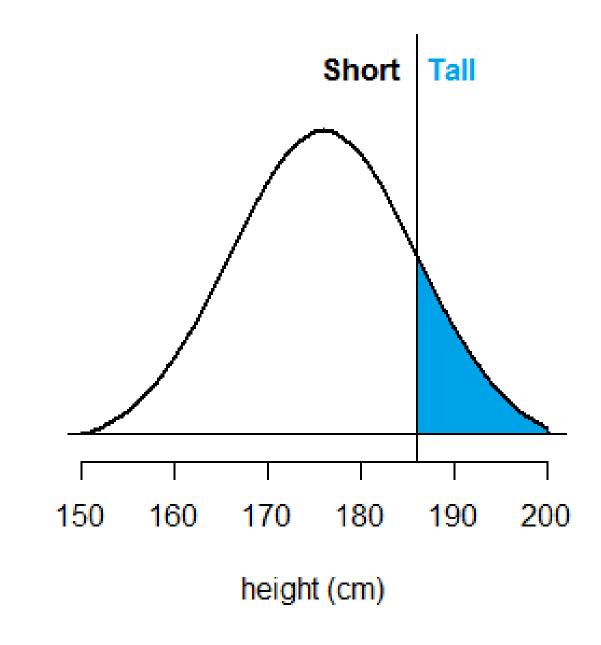
Avoid dichotomization whenever possible

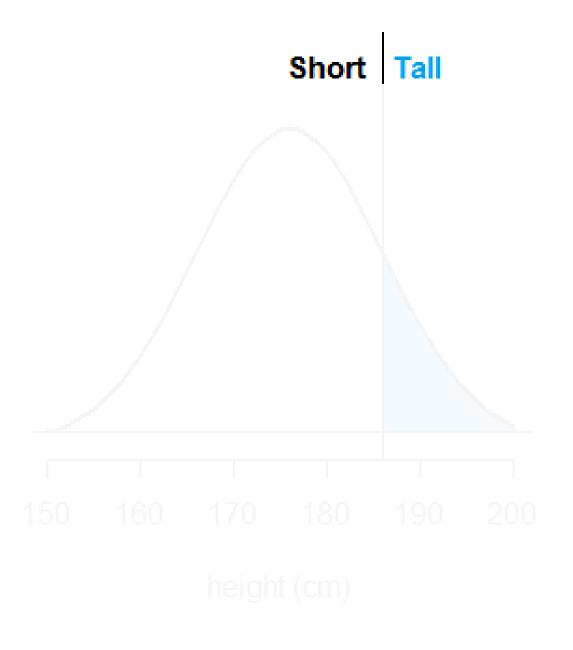
Supplement visual inspection of data with statistics

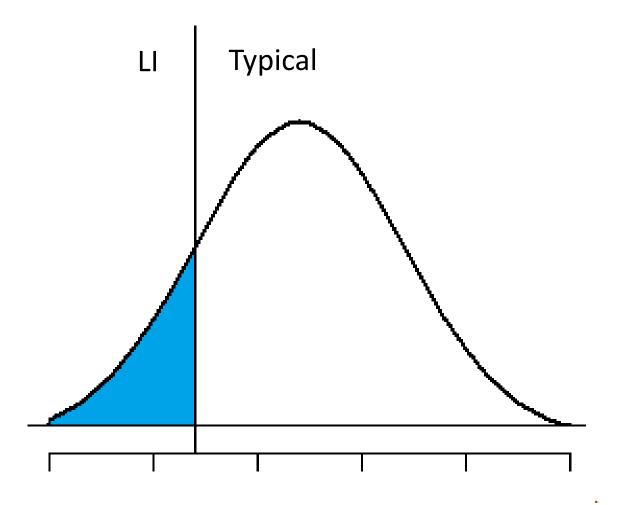
Plan in advance to make sure you have enough power to answer the question you want to ask

Avoid dichotomization whenever possible

What is dichotomization?

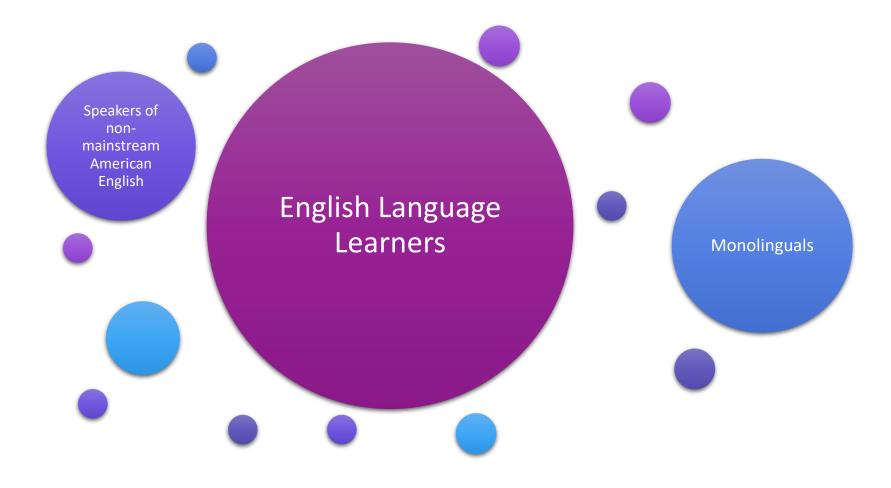




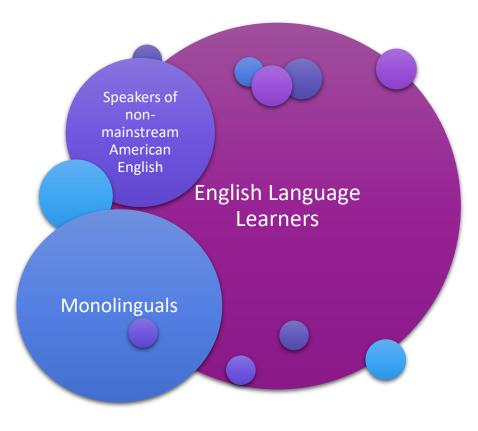


Test scores

- - -



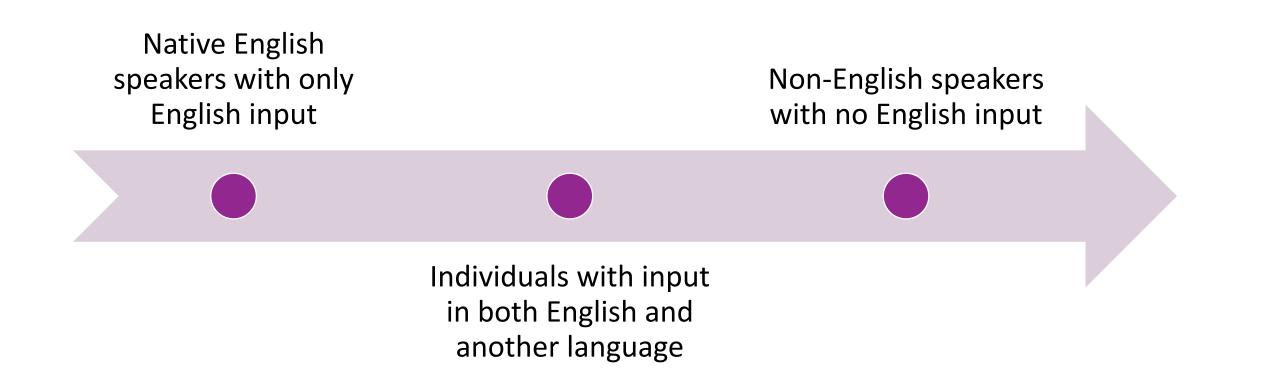
Avoiding Dichotomies



Avoiding Dichotomies

Use continuous measures Example: English proficiency instead of "ELL vs. Monolingual"

Continuum-based "grouping"



Use continuous measures Example: English proficiency instead of "ELL vs. Monolingual"

Use continuous measures

Example: English proficiency instead of "ELL vs. Monolingual"

Reconsider the meaningfulness of the grouping

Is the grouping functionally important? Why are we grouping in research?

Use continuous measures

Example: English proficiency instead of "ELL vs. Monolingual"

Reconsider the meaningfulness of the grouping in research?

If a grouping is meaningful, focus on the functional difference rather than a cut score

Example: Instead of "LI vs. Typically-Developing", consider "Receiving weekly intervention services vs. Not receiving extra educational services"

The Value of Variance

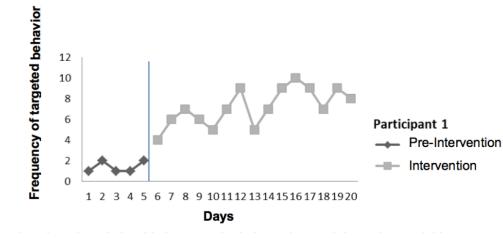
Avoid dichotomization whenever possible

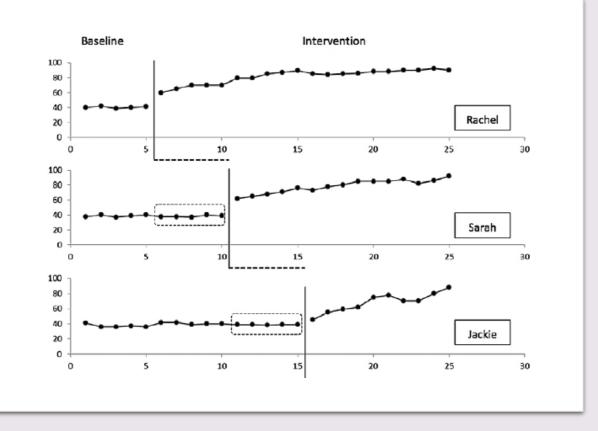
Supplement visual inspection of data with statistics

Plan in advance to make sure you have enough power to answer the question you want to ask

Visual Analysis in Single Case Research

Can be convincing and valid... but is inherently subjective





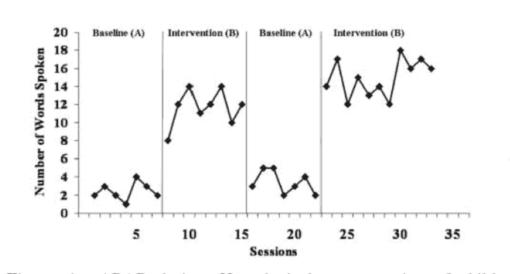


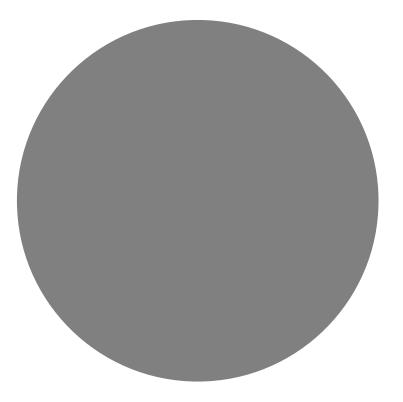
Figure 1. ABAB design: Hypothetical representation of child communication outcomes.

Single Case Research

Consider designing your single case study so that you can use hierarchical linear modeling (HLM)

- Allows for quantification of observed effects
- Allows for (some) examination of predictors

Single Case Research



More measurement time points = more power to detect overall effects

More participants = more power to detect predictors of outcomes

Augmenting Visual Analysis in Single-Case Research with Hierarchical Linear Modeling (Davis, Gagne, Fredrick, Alberto, Waugh, & Harrdorfer, 2013)

The Value of Variance

Avoid dichotomization whenever possible

Supplement visual inspection of data with statistics

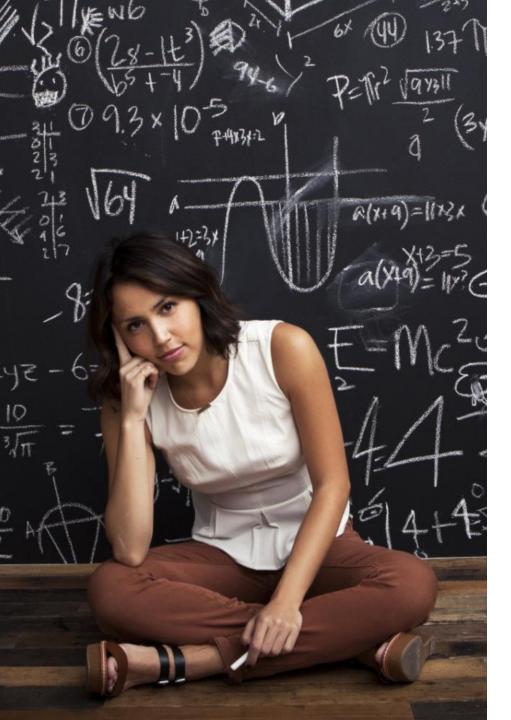
Plan in advance to make sure you have enough power to answer the question you want to ask

Power	Power analyses to determine the sample size needed to answer your research questions
Talk	If planning to use a statistician, talk to him/her well in advance – an ounce of planning is worth a pound of cure
Design	Have your statistician involved in the design of the project
Discuss	Discuss data management early – what does he/she need to be sure that the planned analyses can be completed effectively?

Power	Power analyses to determine the sample size needed to answer your research questions
Talk	If planning to use a statistician, talk to him/her well in advance – an ounce of planning is worth a pound of cure
Design	Have your statistician involved in the design of the project
Discuss	Discuss data management early – what does he/she need to be sure that the planned analyses can be completed effectively?

Power	Power analyses to determine the sample size needed to answer your research questions
Talk	If planning to use a statistician, talk to him/her well in advance – an ounce of planning is worth a pound of cure
	Have your statistician involved in the design of the
Design	project

Discuss	Discuss data management early – what does he/she need to be sure that the planned analyses can be completed effectively?
Design	Have your statistician involved in the design of the project
Talk	If planning to use a statistician, talk to him/her well in advance – an ounce of planning is worth a pound of cure
Power	Power analyses to determine the sample size needed to answer your research questions



Outline

Introduction (Dr. Carla Wood)

Foundation of Statistics (Jessica Hooker)

Overview of Structural Equation Modeling (Dr. Nicole Sparapani)

Overview of Hierarchical Linear Modeling (Dr. Autumn McIlraith)

Valuing Variance in Data Collection (Lisa Fitton)

Discussion (Dr. Suzanne Adlof)