1	Link to Final Published article in American Journal of Speech-Language Pathology (2021):
2	https://pubs.asha.org/doi/10.1044/2021_AJSLP-20-00263
2	
3	
4	
5	Language Variation in the Writing of African American Students:
6	Factors Predicting Reading Achievement
7	
8	Lisa Fitton ^a , Lakeisha Johnson ^b , Carla Wood ^b , Christopher Schatschneider ^c , and Sara A. Hart ^c
9	
10	^a Communication Sciences & Disorders Dept, University of South Carolina, Columbia, SC.
11	^b Communication Science & Disorders, Florida State University, Tallahassee, FL
12	^c Department of Psychology, Florida State University, Tallahassee, FL
13	
14	
15	Correspondence: Correspondence concerning this article should be addressed to Lisa Fitton,
16	Communication Sciences & Disorders Dept., 1705 College Street, Columbia, SC, 29208. Email:
17	fittonl@mailbox.sc.edu
18	Conflict of Interest Statement: The authors have no conflicts of interest relevant to the work
19	reported in this manuscript.
20	Funding Statement: The research reported in this paper was supported by the Eunice Kennedy
21	Shriver National Institute of Child Health and Human Development, National Institutes of
22	Health (Award #P50HD052120).

23

24

42

Abstract

Purpose: To examine the predictive relation between measures obtained from African American

25 students' written narrative language samples and reading achievement, as measured by standardized academic assessments. 26 Method: Written language samples were elicited from 207 African American students in grades 27 28 1-8. The samples were examined for morphosyntactic variations from standardized written Generalized American English (GAE). These variations were categorized as either (a) specific to 29 30 African American English (AAE) or (b) neutral across AAE and standardized written GAE (i.e., 31 considered ungrammatical both in AAE and in standardized written GAE). Structural equation modeling was employed to then examine the predictive relation between the density of AAE-32 specific forms in students' writing and their performance on standardized assessments of literacy 33 and reading vocabulary. This relation was examined while accounting for the density of dialect-34 35 neutral morphosyntactic forms, reported family income, age, and written sample length. 36 **Results**: The written samples were highly variable in terms of morphosyntax. Younger students and those from lower-income homes tended to use AAE-specific forms at higher rates. However, 37 the density of AAE-specific forms did not significantly predict standardized literacy scores or 38 39 reading vocabulary after accounting for dialect-neutral variations, income, and sample length. **Conclusions**: These results support the ongoing need to better understand the language, literacy, 40 41 and overall academic development of students from all backgrounds. It may be essential to focus

43 AAE and standardized written GAE) in written samples to maximize assessment validity across

on dialect-neutral language forms (e.g., morphosyntactic forms that are consistent across both

44 students who speak varying dialects of English.

45	In 2019, only 18% of African American students met criteria for reading proficiency on
46	the National Assessment of Educational Progress (U.S. Department of Education, 2019).
47	Approximately 11% of African American students met criteria for writing proficiency (National
48	Center for Education Statistics, 2012). The overrepresentation of African American individuals
49	among students performing at below-basic levels has received considerable attention in recent
50	years (Gatlin & Wanzek, 2017; Washington et al., 2019). Numerous factors, such as
51	socioeconomic background and variability in the quality of language and literacy environments,
52	have been explored as contributors to this vulnerability for academic underachievement, but no
53	single factor provides a complete explanation (Terry et al., 2018). For example, although African
54	American students are more likely to come from low-income backgrounds than are Caucasian
55	students (Reardon et al., 2018), gaps in academic performance exist after controlling for
56	socioeconomic status and school composition (Bohrnstedt et al., 2015; Reardon et al., 2019).
57	Given the multifaceted and structural mechanisms (e.g., systemic racism) that underly
58	achievement gaps (Merolla & Jackson, 2019), there is a need to evaluate predictors of
59	achievement in a more comprehensive framework, to gain a fuller picture of students'
60	experiences and environments, and how they might contribute to literacy development.
61	The body of literature examining literacy development among African American students
62	includes relatively few studies that have focused specifically on the development of written
63	language skills (Gatlin & Wanzek, 2015; Ivy & Masterson, 2011; Puranik et al., 2019). Writing
64	is a critical skill not only for general academic learning and annual standardized testing, but also
65	as a metric for evaluating ability related to higher education and suitability for employment.
66	Written performance is commonly used to monitor progress in educational settings and therefore
67	is of particular interest as a key component of overall academic achievement (National Center for

68 Education Statistics, 2019; Wagner et al., 2011).

69	For African American students, nonmainstream dialect use has been suggested as a
70	potential explanatory factor for observed achievement gaps (see Siegel, 1999), given that
71	correlations have been observed between nonmainstream dialect use and the development of
72	literacy-related skills, including writing (Gatlin & Wanzek, 2015). Although all individuals
73	speak a dialect, some American dialects other than Generalized American English (GAE; also
74	called Standardized American English or Mainstream American English) have been
75	discriminatorily stigmatized as "inferior" language systems (Baker-Bell, 2020; Brown, 2019;
76	Dovchin, 2020). It is important to emphasize that all dialects are rule-bound systems with no
77	inherent superiority or inferiority. Although it is common to not recognize GAE as a specific
78	dialect (Hamilton et al., 2018), GAE is neither exceptional nor the default dialect of American
79	English (Charity Hudley et al., 2018; Oetting et al., 2016).
80	Dialects of American English other than GAE have been broadly termed
80 81	Dialects of American English other than GAE have been broadly termed "Nonmainstream American English." African American English (AAE), a dialect most
81	"Nonmainstream American English." African American English (AAE), a dialect most
81 82	"Nonmainstream American English." African American English (AAE), a dialect most commonly spoken with variable density by African American individuals in the U.S., is one such
81 82 83	"Nonmainstream American English." African American English (AAE), a dialect most commonly spoken with variable density by African American individuals in the U.S., is one such Nonmainstream American English (NMAE) dialect that has unique morphological, semantic,
81 82 83 84	"Nonmainstream American English." African American English (AAE), a dialect most commonly spoken with variable density by African American individuals in the U.S., is one such Nonmainstream American English (NMAE) dialect that has unique morphological, semantic, syntactic, phonological, and pragmatic rules (Baker-Bell, 2020; Stockman, 2010). Some of the
81 82 83 84 85	"Nonmainstream American English." African American English (AAE), a dialect most commonly spoken with variable density by African American individuals in the U.S., is one such Nonmainstream American English (NMAE) dialect that has unique morphological, semantic, syntactic, phonological, and pragmatic rules (Baker-Bell, 2020; Stockman, 2010). Some of the morphosyntactic forms of AAE overlap with several other NMAE dialects such as Southern
81 82 83 84 85 86	"Nonmainstream American English." African American English (AAE), a dialect most commonly spoken with variable density by African American individuals in the U.S., is one such Nonmainstream American English (NMAE) dialect that has unique morphological, semantic, syntactic, phonological, and pragmatic rules (Baker-Bell, 2020; Stockman, 2010). Some of the morphosyntactic forms of AAE overlap with several other NMAE dialects such as Southern White English (Oetting, 2019) and Gullah/Geechee (Berry & Oetting, 2017). Some of these rules
81 82 83 84 85 86 87	"Nonmainstream American English." African American English (AAE), a dialect most commonly spoken with variable density by African American individuals in the U.S., is one such Nonmainstream American English (NMAE) dialect that has unique morphological, semantic, syntactic, phonological, and pragmatic rules (Baker-Bell, 2020; Stockman, 2010). Some of the morphosyntactic forms of AAE overlap with several other NMAE dialects such as Southern White English (Oetting, 2019) and Gullah/Geechee (Berry & Oetting, 2017). Some of these rules contrast with rules of GAE, whereas other rules of AAE are consistent or neutral to GAE

are contrastive with GAE, and "dialect-specific" to refer generally to rules of NMAE dialects 91 that are contrastive with GAE (Stockman, 2010). 92

Researchers have observed a negative association between African American students' 93 density of AAE-specific forms and their reading development (Craig, Connor, et al., 2003; Terry 94 et al., 2016). Much of this literature was synthesized in a 2015 meta-analysis Gatlin and Wanzek 95 96 conducted to quantify the relation between the density of nonmainstream dialect-specific forms and literacy development. Findings revealed an overall moderate negative correlation between 97 the density of dialect-specific forms and literacy performance, unmoderated by socioeconomic 98 99 status or grade level (Gatlin & Wanzek, 2015). Critically, the authors highlighted the need for caution in interpreting these findings as indicative of linguistic interference (i.e., NMAE 100 negatively impacting literacy development). Dialectal variation provides only a single piece of 101 the complete picture, which must be viewed in context to better understand achievement gaps 102 103 observed between African American and Caucasian students (Gatlin et al., 2016; Terry et al., 104 2018).

The overall purpose of the present paper was to evaluate the relation between African 105 American students' density of AAE-specific forms in writing and their reading achievement, 106 107 while accounting for socioeconomic status and dialect-neutral writing skills. In the following literature review, we summarize work that has examined the relations between dialectal variation 108 109 and achievement, detail the value of focusing on the density of dialect-specific forms, and 110 describe our approach for examining the written language of African American students.

111

Dialect Use and Academic Achievement

Numerous studies have examined the relations between students' dialectal variation and 112 113 their literacy skills (Kohler et al., 2007; Terry et al., 2012, 2016). In considering this body of

literature, it is essential first to review how dialectal variation has generally been operationalized. 114 Many studies quantify dialectal variation by counting how often dialect-specific forms appear in 115 samples of students' language and then computing a token-based measure of frequency of 116 occurrence, or "dialect density" (Horton-Ikard & Miller, 2004; Washington & Craig, 2002). 117 Three widely used token-based measures of dialect density, which were reviewed by Oetting and 118 119 McDonald (2002), account for both the number of dialect-specific forms observed and the length of the language sample obtained to reduce the impact of bias contributed by transcript length. For 120 121 example, one dialect density measure (DDM) is the ratio of utterances that contain one or more 122 dialect-specific forms to the total number of utterances produced. Another DDM is the ratio of the total number of dialect-specific forms in the sample to the total number of words produced 123 (Craig et al., 1998; Craig & Washington, 2000, 2002). Studies that have examined correlations 124 between these DDMs and students' reading performance have found significant negative 125 associations (Gatlin & Wanzek, 2015). 126

127 Both morphosyntactic and phonological AAE-specific forms have been quantified in research using measures of dialect density (Terry, 2006; Washington et al., 2018). AAE-specific 128 morphosyntactic forms include variable past tense -ed marking (e.g., "He walk there yesterday" 129 130 where "yesterday" indicates that the action is past tense) and multiple negatives to intensify negation (e.g., "He don't see nothin"; Thompson et al., 2004; Washington & Craig, 2002). 131 132 AAE-specific phonological forms include pronunciation of the printed "-ing" as /In/ (e.g., 133 "running" pronounced /rʌnɪn/) and initial "th-" as /d/ (e.g., "though" pronounced /dou/; Craig, Thompson, et al., 2003; Thomas, 2007). These forms may appear both in the spoken and written 134 language of AAE speakers (Ivy & Masterson, 2011; Patton-Terry & Connor, 2010). See Craig 135 136 and Washington (2004) for a list of AAE-specific morphosyntactic and phonological forms.

137	African American individuals exhibit wide variability in AAE use, indicating first that
138	not all African American students speak AAE and secondarily that dialect-specific forms may be
139	produced differently in different contexts (Jencks, 1998; Terry et al., 2016; Thompson et al.,
140	2004). Among students who do speak AAE, there exists a well-documented ability to dialect
141	shift (i.e., adjust the frequency of use of AAE-specific forms) based on the context. For example,
142	Horton-Ikard and Miller found that students produced AAE-specific forms at differing rates
143	when asked to tell stories about past experiences compared to when they engaged in simple
144	conversation with a Caucasian clinician (2004). Similar results have been observed in
145	comparisons of density of AAE-specific forms in sentence repetition tasks relative to
146	storytelling, with GAE-based sentence repetition yielding lower density of AAE-specific forms
147	than storytelling (Connor & Craig, 2006).
147 148	than storytelling (Connor & Craig, 2006). The ability to dialect shift fluently based on context and, in particular, to reduce use of
148	The ability to dialect shift fluently based on context and, in particular, to reduce use of
148 149	The ability to dialect shift fluently based on context and, in particular, to reduce use of AAE-specific forms in school-based contexts has been suggested to be an indicator of
148 149 150	The ability to dialect shift fluently based on context and, in particular, to reduce use of AAE-specific forms in school-based contexts has been suggested to be an indicator of metalinguistic skill, which in turn may contribute to literacy development and broader academic
148 149 150 151	The ability to dialect shift fluently based on context and, in particular, to reduce use of AAE-specific forms in school-based contexts has been suggested to be an indicator of metalinguistic skill, which in turn may contribute to literacy development and broader academic achievement (Craig et al., 2009, 2014; Terry et al., 2012). To dialect shift fluently, an individual
148 149 150 151 152	The ability to dialect shift fluently based on context and, in particular, to reduce use of AAE-specific forms in school-based contexts has been suggested to be an indicator of metalinguistic skill, which in turn may contribute to literacy development and broader academic achievement (Craig et al., 2009, 2014; Terry et al., 2012). To dialect shift fluently, an individual must not only develop awareness of dialect-specific and dialect-neutral forms, but also of
148 149 150 151 152 153	The ability to dialect shift fluently based on context and, in particular, to reduce use of AAE-specific forms in school-based contexts has been suggested to be an indicator of metalinguistic skill, which in turn may contribute to literacy development and broader academic achievement (Craig et al., 2009, 2014; Terry et al., 2012). To dialect shift fluently, an individual must not only develop awareness of dialect-specific and dialect-neutral forms, but also of contexts in which certain dialectal forms may be preferred and others stigmatized (Latimer-

157 AAE-Specific Forms in Writing

Writing may represent a context in which students are more explicitly taught to use fewer
AAE-specific forms (Horton-Ikard & Pittman, 2010; Johnson et al., 2017). Overall, children who

160	speak AAE tend to use fewer AAE-specific forms in written contexts compared to oral language
161	(Craig et al., 2009; Patton-Terry & Connor, 2010), a trend that may be attributable to the
162	formality of academic language more commonly expected in written communication relative to
163	spoken communication (Charity Hudley et al., 2018; Puranik et al., 2019). High-achieving
164	speakers of AAE seem to pick up on this trend, often "dialect shifting" or "code switching"
165	without direct instruction, exhibiting fewer AAE-specific forms in their writing (Craig et al.,
166	2009) and generally reducing the density of AAE-specific forms in their language as they get
167	older (Ivy & Masterson, 2011). Highly stigmatized forms such as ain't, multiple negation, and
168	habitual be are examples of some AAE-specific forms that appear less frequently in writing
169	when compared to spoken communication (Ivy & Masterson, 2011).
170	Students who struggle academically, however, may not pick up on these implicit
171	expectations (Craig et al., 2009; Hendricks & Diehm, 2020; Terry et al., 2010). Therefore,
172	students with lower overall language skills and academic achievement may exhibit a higher
173	density of AAE-specific forms in their writing.
174	An increasing number of studies have focused specifically on African American students'
175	writing and the potential influence of AAE-specific forms on writing development. This work
176	suggests that, among African American students who speak AAE, variability in spelling and
177	written morphosyntax may be in part attributable to contrasts between spoken AAE and written
178	academic language expectations (Gatlin & Wanzek, 2017; Patton-Terry & Connor, 2010;
179	Puranik et al., 2019). For example, Horton-Ikard and Pittman (2010) examined the written
180	language samples of 10th-grade African American students and observed some AAE-specific
181	morphosyntactic forms in their writing. The density and diversity of these forms, however, was
182	lower than that observed in their oral language (Horton-Ikard & Pittman, 2010). Ivy and

Masterson (2011) compared written and oral language samples of African American students in 183 third and eighth grade. They identified six grammatical forms specific to AAE for coding, 184 185 including the zero forms of: verbal -s; plural -s; possessive -s; regular past tense -ed; be copula; and the be auxiliary. Among third graders, no statistically significant differences were found in 186 the density of AAE-specific forms between oral and written modalities. However, eighth graders 187 188 demonstrated a significantly higher density of AAE-specific forms in spoken language compared to written language, suggesting that older students had developed the ability to dialect shift 189 190 within the written language context (Ivy & Masterson, 2011).

191 Present Study

Underlying, inherent language ability is not determined by mainstream versus 192 nonmainstream dialect use and using a nonmainstream dialect in and of itself does not lead to 193 literacy difficulties (Lee-James & Washington, 2018; Terry et al., 2018). Both children with and 194 without language disorders may use dialect-specific forms with varying densities. Therefore, to 195 196 examine the specific contribution of nonmainstream dialect density to reading achievement, accounting for both dialect-specific and dialect-neutral forms may be necessary (Oetting et al., 197 2016, 2019). In the present study, we account for dialect-neutral language ability through two 198 199 types of measures. First, we computed density measures for dialect-neutral variations from standardized written GAE (Fogel & Ehri, 2000), counting forms that would be considered 200 201 ungrammatical in both AAE and standardized written GAE. For example, the sentence "They 202 run jump" includes omission of the conjunction and. Conjunction omission violates the rules of both AAE and standardized written GAE, and therefore would be considered a dialect-neutral 203 204 variation. Second, we included measures of written language productivity (e.g., number of 205 different words, total number of t-units) to account for variance reduction due to sample length,

which can lead to inaccurate estimations of language ability (Hendricks & Adlof, 2017).

Socioeconomic status, another key influencer of academic success (Dietrichson et al., 207 2017), may be confounded with the density at which individuals use dialect-specific forms 208 (Charity et al., 2004). African American students are more likely to live in impoverished 209 environments and attend under-resourced schools due to systemic racism (Reardon et al., 2018, 210 211 2019). Consequently, to disentangle the precise relation between nonmainstream dialect density 212 and achievement, socioeconomic status should be considered (Craig et al., 2009). 213 In the present study, we sought to evaluate the predictive relation between African 214 American students' written use of AAE-specific forms and their reading achievement. We included general writing productivity, family income, and dialect-neutral written variations as 215 covariates. As noted above, it is well-established that the three included covariates influence 216 language, literacy, and overall academic performance. Therefore, their inclusion allows for a 217 more precise examination of the unique relation between nonmainstream dialect-specific forms 218 219 and literacy achievement. We examined written language samples produced by African American students between grades 1-8 in response to a narrative prompt. We addressed the 220

221 following questions:

What are the general descriptive characteristics of written, personal narrative
 language samples produced by African American students in grades 1-8?

224 2. How often do AAE-specific morphosyntactic forms appear in the students' written225 language samples?

3. Does the density at which AAE-specific morphosyntactic forms appear in students'
writing samples predict reading achievement when also accounting for dialect-neutral
ungrammatical forms, writing productivity, and family income?

Method

Participants

231	The current study utilized a sub-sample of school-aged children who participated in the
232	Florida Twin Project on Reading, Behavior and Environment, a large study of twins attending
233	schools throughout Florida (Taylor et al., 2019). Participants were selected from the larger study
234	based on their caregivers' report of their race/ethnicity. All children whose parents reported their
235	race/ethnicity as "African American" were included. This sample included 207 children, with 95
236	complete twin pairs and an additional 17 singleton participants whose twins did not complete the
237	narrative prompt. Participants were in 1 st through 8 th grade, with an average age of 11.5 years.
238	Demographic information for included children is provided in Table 1 at the child level.
239	[insert Table 1]
240	Procedure and Measures
241	Standardized, state-level achievement measures were administered by trained proctors as
242	part of statewide testing required by normal school attendance. Test scores were uploaded into
243	Florida's Progress Monitoring and Reporting Network (PMRN). Schools also reported
244	participants' eligibility for free or reduced-price lunch.
245	During the 2012-2013 school year, questionnaires and testing packets were mailed to the
246	homes of participants enrolled in the larger project (Taylor et al., 2019). Parents completed self-
247	report measures concerning their children's race and family SES. Parent education was reported
248	on a 1-8 scale, with "1" indicating Grade 6 or less and "8" indicating graduate or professional
249	school. Parents also reported yearly household income on a 1-12 scale at \$19,000 intervals. The
250	value "1" specified an income below \$10,000 and "12" indicated \$210,000 or more per year.
251	Parents were also asked to administer a battery of achievement tests, including subtests

from the Gates-MacGinitie Reading Test- 4th Edition (MacGinitie & MacGinitie, 2006) and the 252 narrative writing prompt, to their twins using a scripted elicitation guide. Neither task requires 253 special qualifications or training, and both may be group-administered. Written instructions 254 included "We would like for you to 'play teacher' and read the directions as if you were 255 speaking to a classroom and monitor the twins so that you can ensure they do their work 256 257 individually..." (also see Daucourt et al., 2020). Parents were asked to report any testing that did 258 not occur as instructed, and the investigators made case-by-case decisions on data quality for any 259 inconsistencies described. All parents provided informed consent and children provided assent to 260 participate as approved by the Florida State University Institutional Review Board.

Written language samples. Language samples provide snapshots of children's 261 expressive language use and can reveal variations in language that predict later achievement 262 (Horton-Ikard, 2010; Moyle et al., 2007; Rojas & Iglesias, 2013). Written narratives were 263 elicited using the prompt, "One day when I got home from school....." in the child's natural 264 265 setting (e.g., home) similar to written prompts used in other studies to examine school-age children's written language skills (Bahr et al., 2012; Dockrell et al., 2014). Children used pencils 266 and were instructed to write on lined paper provided to the parents by the researchers. The 267 268 writing task was untimed and not constrained in length; however, caregivers were told the 269 activity should take 10-15 minutes. This elicitation strategy was selected because it is 270 naturalistic, simple for caregivers to administer, and appropriate for a wide age range.

Transcription of samples. Undergraduate students enrolled in the speech-language
pathology major typed the written samples into electronic transcript files. Transcripts were then
formatted using Systematic Analysis of Language Transcripts (SALT) software and conventions
(Miller & Iglesias, 2017), and segmented into t-units by undergraduate research assistants

following conventions of segmenting writing samples (Price & Jackson, 2015). All research
assistants received training in SALT transcription and segmentation and demonstrated at least
90% reliability with the first author on word-by-word transcription, t-unit segmentation, and
SALT conventions on practice transcripts. Practice reliability was established on each of these
components of transcription before research assistants began transcribing the research samples.

280 *Measures of written language productivity*. Several standard measures of language sampling were obtained from the formatted transcripts (Miller & Iglesias, 2017). Number of total 281 282 words (NTW), a measure of transcript length and broad semantics, was obtained by counting the 283 number of words written in the sample. The number of different words (NDW), which is a measure of lexical diversity, was computed by summing the total number of different root words 284 included in the sample. Mean length of t-unit (MLTU), a measure analogous to MLU that 285 quantifies morphosyntactic complexity, was computed by dividing the number of total 286 morphemes in a sample by the total number of completed t-units in the sample. Total number of 287 288 t-units (TNU), another measure of transcript length, was obtained by summing the number of tunits. (Price & Jackson, 2015). 289

Coding written language forms. Two research assistants first independently coded each 290 291 of the written narratives for grammatical, spelling, and punctuation forms that would be considered variations relative to standardized written GAE (Fogel & Ehri, 2000; Horton-Ikard & 292 293 Pittman, 2010). The identified grammatical forms were then categorized as either (a) specific to 294 African American English (S-AAE), or (b) dialect neutral forms that would be considered ungrammatical relative both to African American English and standardized written GAE (M-295 296 Neutral). A list of AAE-specific morphosyntax was used to categorize the forms (Craig & 297 Washington, 2004; Washington & Craig, 2002). Variations from standardized written GAE that

were consistent with AAE were identified as S-AAE. Those that were not consistent with AAE
were identified as M-Neutral. For example, the sentence "she walk to store earlier" includes two
grammatical variations relative to standardized written GAE: "she walk...earlier" includes a zeroform past tense *-ed*, and "to store" includes an article omission. Zero-form past tense *-ed* would
be categorized as S-AAE because it is consistent with the morphosyntactic rules of AAE,
whereas article omission would be categorized as M-Neutral because it is not consistent with the
morphosyntactic rules of AAE or standardized written GAE.

We focused on grammar because African American students have been observed to incorporate more forms consistent with the morphosyntax of AAE than those consistent with the phonology of AAE in their writing (Thompson et al., 2004). The procedures used were aligned with prior work examining general writing variations conducted by Scott and Windsor (2000) and work examining AAE-specific forms in writing conducted by Horton-Ikard and Pittman (2010).

Both the research assistants who coded the written samples completed transcription and coding training protocols directed by the first author. Training included: (a) explicit instruction of definitions and contextual examples of AAE-specific forms (Craig & Washington, 2004), (b) guided practice on ten written samples, (c) independent practice on fifteen samples with specific feedback and line-by-line fidelity scoring provided for each sample, (d) reliability testing requiring 90% coding fidelity for individual forms on ten samples.

317 *Density measures.* Token-based measures of density were calculated based on the written 318 samples both for S-AAE and for M-Neutral (Oetting & Mcdonald, 2002). The measures were 319 based on the three dialect density measures (DDMs, density by total words, density by t-units, 320 and density by t-units containing a target form) that have been used to examine dialect use in written samples and that are considered more robust measures than raw number of form
occurrences (Ivy & Masterson, 2011; Schachter & Craig, 2013).

For the AAE-specific forms (S-AAE), density by total words (DDM_w) was obtained by summing the total forms identified as S-AAE in the analysis set, and then dividing by the words in the sample. Density by t-units (DDM_t) was calculated by again summing the total number of S-AAE forms, but then dividing by the number of t-units in the sample. Finally, density by tunits containing a target form (DDM_d) was computed by counting the number of t-units in each sample that included one or more S-AAE form and dividing by the total number of t-units in the sample.

For the dialect-neutral ungrammatical forms (M-Neutral), three values were also computed to provide comparable density measures. Density by total words (Neutral_w) was computed by summing the M-Neutral forms identified in the sample, and then dividing by the total words in the sample. Density by t-units (Neutral_t) was calculated by again summing the M-Neutral forms identified, and then dividing by the number of t-units in the sample. Neutral_d was computed summing the number of t-units in each sample that included one or more M-Neutral form and then dividing by the number of total t-units in the sample.

Reliability. Reliability for the written samples was established between the two trained
research assistants. Research assistants double coded all 207 of the transcripts. Reliabilities were
computed by dividing the total agreements by the sum of agreements plus disagreements. Coding
reliability was good, measured at 97.4% for S-AAE, 95.9% for M-Neutral, 99.6% for t-unit
segmentation, and 99.5% for morpheme segmentation. Discrepancies were resolved by the first
author after obtaining reliability values.

343

Outcome measures. Three measures of language and literacy were included to profile

reading achievement for participating students. These included a state-level high-stakes test
(FCAT), a norm-referenced assessment designed for progress monitoring (FAIR), and a reading
vocabulary assessment administered at home (GMRT). These three measures were selected to
represent a range of skills important to longitudinal academic achievement.

348 Florida's Comprehensive Assessment Test 2.0 (FCAT; Florida Department of Education, 349 2013) is a state-wide high-stakes assessment administered annually near the end of the academic 350 year. The FCAT is designed for grades 3-12 and covers content areas including reading, writing, 351 math, and science. Students' developmental scaled scores from the FCAT reading assessment 352 were used in the present study. Internal consistency reliability (Cronbach's alpha) is reported to 353 be 0.88-0.92 for FCAT Reading.

The Florida Assessments and Instruction in Reading (FAIR; Foorman et al., 2009) was 354 designed to assess students' global literacy skills as a progress-monitoring indicator and 355 predictor of FCAT Reading performance. Administered in the fall, winter, and spring of the 356 357 academic year, the FAIR is a norm-referenced computer-adaptive screening and diagnostic measure. It is aligned with state language arts standards and scaled for grades K-12. The FAIR 358 Reading Comprehension, Maze (reading fluency), and Word Analysis (spelling) subtests were 359 360 administered to all students across grades 3-7 in 2012-2013 and therefore were selected for the present analyses. Standard scores from all three testing occasions of the school year were 361 362 included. Internal consistency reliability ranged from .86 to .92 for the included subtests. Subtests of the Gates-MacGinitie Reading Test- 4th Edition (GMRT-4, MacGinitie & 363 MacGinitie, 2006) were also administered by participants' caregivers following a scripted 364 365 elicitation guide sent via mail (see Daucourt et al., 2020). The GMRT-4 is a paper-pencil test 366 designed for individuals in kindergarten through adulthood. The full assessment is often

employed as a diagnostic tool to provide information about students' strengths and weaknesses 367 in reading. Different subtests are administered for reading vocabulary by grade level. Students in 368 grades 1-2 complete the Word Decoding subtest, for which the student views a picture (e.g., 369 practice item: pig) and a list of four orthographically similar written words (e.g., big, fig, pig, 370 *dig*). The child is directed to select the word that corresponds with the picture. Students in grades 371 372 3 and up complete the Vocabulary subtest, for which the student views a sentence with a word underlined (e.g., practice item: She felt happy.) and a list of four written words (e.g., sleepy, hot, 373 *ready*, *glad*). The student is directed to select the word that is a synonym or definition of the 374 375 underlined word. The test manual reports construct validity estimates of .79 to .81; test-retest reliability between .85 and .90; and internal reliability of .96 (MacGinitie & MacGinitie, 2006). 376

377 Analyses

To address the first research question, data was first examined descriptively to provide an overall picture of students' writing. Descriptive data was obtained across the entire sample for background characteristics, standard measures of language sampling, and measures of academic achievement. In response to the second research question, samples were evaluated for frequency of occurrence of each AAE-specific form (S-AAE).

To evaluate the relation between written density of AAE-specific forms and academic achievement as indicated by the third research question, structural equation modeling was used. Data normality and multivariate linearity were evaluated through the psych (Revelle, 2019) and ggplot2 (Wickham, 2016) packages in R (R Core Team, 2020). Age was regressed out of the standard measures of language sampling, S-AAE, M-Neutral, and GMRT-4 and FCAT scores to obtain values comparable across all ages included in the sample (FAIR data already accounted for age). Values were then z-scored to provide a consistent metric for interpretation across the model. To address the nesting of twins within families, twin pairs were initially randomly
divided into two samples and examined for substantive differences. As no differences were
observed between the groups, the sample was re-combined and family nesting was accounted for
in subsequent modeling. This decision was made based on the body of work that suggests that
research findings from twin samples are generalizable to broader populations (e.g., Christensen
et al., 2006; Walker, Petrill, Spinath, & Plomin, 2004).

Next, confirmatory factor models were evaluated for each of the latent constructs of 396 397 interest using Mplus 8.4 (Muthén & Muthén, 2019). A latent construct of writing productivity 398 was measured through number of total words (NTW), total number of t-units (TNU), and number of different words (NDW). M-Neutral density was constructed from the three M-Neutral density 399 measures (Neutral_t, Neutral_t). Similarity, S-AAE density included the three dialect 400 density measures (DDM_w, DDM_w, DDM_d). Finally, the multiple measures available from the 401 FAIR (i.e., three time points for Word Analysis, Mazes, and Reading Comprehension) were 402 403 examined as contributors to a single latent factor. Each structure was examined individually to confirm goodness-of-fit before being included in the larger model. 404

405 After the latent factor structures were established, the hypothesized structural model was 406 analyzed in Mplus 8.4 (Muthén & Muthén, 2019). Model fit was assessed following descriptions by Kline (2011) and Chen et al. (2008). Generally, a root-mean-square error of approximation 407 408 (RMSEA) below .10, a comparative fit index (CFI) and Tucker Lewis index (TLI) above .90, 409 and the standardized root mean square residual (SRMR) below .08, were considered indicators of 410 reasonable global fit, although values were evaluated collectively and with preference for more 411 stringent values. Individual parameter estimates were also examined for evidence of misfit (e.g., 412 negative residual variance; Kline, 2011).

Results

Descriptives for background characteristics, standard measures of language sampling,
and reading achievement scores are provided in Table 2. Within the present participant sample,
150 students included at least one instance of an S-AAE form in their written narratives. All but
7 of the participants had at least one instance of an M-Neutral form in their writing. Descriptive
information for the language sampling measures is provided by grade in Table 3. Descriptive
information for all measures is disaggregated by presence of S-AAE forms in Table S1.
[insert Table 2 and Table 3 here]
Sample length and lexical diversity was associated with age. Older students produced
longer samples with more words: TNU $r = .23$, $p = .005$; NTW $r = .32$, $p < .001$; NDW $r = .39$, p
< .001. Students' ages were negatively associated with DDM_w ($r =21$, $p = .009$), but not with
DDM _t or DDM _d : $r =06$, $p = .494$, and $r =04$, $p = .640$, respectively. Student age also was
negatively associated with all measures of M-Neutral density: Neutral _w $r =37$, $p < .001$;
Neutral _t $r =22$, $p = .001$; Neutral _d $r =22$, $p = .002$. Correlations among z-scored variables are
presented in Figure 1.
[insert Figure 1]
Unsurprisingly, given the past tense formulation of the narrative prompt, zero form past
tense - <i>ed</i> appeared the most frequently ($M = 1.07$ per sample, $SD = 1.75$), followed by zero form
plural -s ($M = 0.43$ per sample, $SD = 1.05$), then subject-verb shifts ($M = 0.34$ per sample, $SD =$
0.85). Six AAE-specific morphosyntactic forms were not produced in any of the samples. These
included remote past been, regularized reflexive pronouns, invariant be, double

copula/auxiliary/modal, use of ain't, and completive done. Average occurrences of each coded

form is provided in Table 4 (AAE-specific) and Table 5 (M-Neutral). 436

437 Factor Analyses

438	Confirmatory factor models constructed for each of the latent constructs of interest all fit
439	the data well, with global fit statistics well within preferred ranges (Kline, 2011) and no evidence
440	of misfit observed in the parameter estimates or residuals. The FAIR factor was best represented
441	by a three-dimensional structure with a second-order latent factor for overall literacy (see
442	"FAIR" in Figure 2). The standardized factor loadings obtained for these in the structural model
443	framework are available in Table S2 in the supplementary material for this paper.
444	Structural Equation Modeling (SEM)
445	The hypothesized structural model fit the data reasonably, with global fit statistics within
446	the preferred ranges. The RMSEA was 0.069 (90% $CI = 0.058 - 0.080$). The model yielded a
447	CFI of 0.957, a TLI of 0.946, and a standardized root mean square residual (SRMR) of 0.068.
448	The model accounted for 25.5 % of the variance in students' FCAT scores, 16.9% of the
449	variance in GMRT scores, and 51.5% of the variance in FAIR. See Figure 2.
450	[insert Figure 2]
451	The density at which S-AAE forms appeared in the writing samples did not significantly
452	predict FAIR or GMRT scores above and beyond the other predictors: FAIR (-0.07, $SE = 0.10$, p
453	= .522) and GMRT (-0.07, $SE = 0.07$, $p = .294$). S-AAE did meet $p < .05$ criteria for significantly
454	predicting students' FCAT scores (-0.17, $SE = 0.10$, $p = .038$). Conversely, the density at which
455	dialect-neutral forms (M-Neutral) appeared did predict all three outcome measures significantly:
456	FAIR (-0.16, <i>SE</i> = 0.08, <i>p</i> = .033), FCAT (-0.16, <i>SE</i> = 0.07, <i>p</i> = .024), and GMRT (-0.34, <i>SE</i> =
457	0.08, $p < .001$). Narrative productivity only significantly contributed to predicting FAIR (0.20,
458	SE = 0.09, $p = .021$). Household income did not significantly predict GMRT scores, but it did

459 predict FAIR (0.59, SE = 0.09, p < .001) and FCAT (0.34, SE = 0.08, p < .001).

460	To assess the robustness of the results, the hypothesized model was compared against one
461	nested model using Satorra-Bentler chi-square difference testing with a correction factor for
462	MLR (Satorra & Bentler, 2010). The comparison model included constraints for all of the path
463	coefficients between S-AAE and the outcome measures set to zero (see Figure S1). Global model
464	fit for the nested model was good: $RMSEA = 0.069 (90\% CI = 0.058 - 0.079)$, $CFI = 0.956$, TLI
465	= 0.947, SRMR $= 0.073$. The constrained model was not a significantly worse fit to the data
466	$(\chi^2(3) = 4.08 \text{ with } 0.96 \text{ correction}, p = .253)$, suggesting S-AAE was not a key predictor of
467	students' test scores after accounting for the other values in the model.
468	Generally, .80 power is acceptable to be confident in non-significant results for the
469	overall model in SEM. For a model with over 100 degrees of freedom, such as the present model,
470	a minimum of 178 participants are needed for the test of not-close fit, which is desired when the
471	RMSEA is greater than 0.05 (MacCallum et al., 1996). This study had approximately 0.87
472	power, given the sample size was greater than 200 and the degrees of freedom were above 100,
473	indicated that the model was adequately powered.
474	Discussion
475	The primary purpose of this paper was to examine the predictive relation between
476	African American students' density of use of African American English (AAE)-specific
477	morphosyntactic forms in writing and their reading achievement. We sought to evaluate this
478	relation in the context of including income, writing productivity, and density of dialect-neutral
479	ungrammatical forms as covariates. We examined measures of literacy and reading vocabulary
480	as outcomes. This work was conducted to contribute to researchers' and practitioners'
481	understanding of nonmainstream dialect use in academic contexts to inform the continued

development of increasingly effective approaches for supporting the education of AfricanAmerican students.

In the context of these written samples, we found that the density at which S-AAE forms 484 appeared did not substantially contribute to predicting students' performance on the measures of 485 academic achievement when accounting for household income, writing productivity, and dialect-486 487 neutral forms. Rather, the density of forms considered to be ungrammatical both in AAE and standardized written GAE (i.e., M-Neutral) emerged as the most consistent significant predictor 488 489 of students' scores on standardized achievement measures. This central finding that dialect-490 neutral ungrammatical forms, rather than AAE-specific forms, predicted test performance underscores the importance of general language skills in students' overall reading, writing, and 491 academic development. Critically, the ability to acquire language skills is not contingent on use 492 of any particular dialect (Lee-James & Washington, 2018; Terry et al., 2018). Regardless of 493 494 spoken dialect, students demonstrate varying levels of underlying language ability (Johnson & 495 Gatlin-Nash, 2020).

In the present work, findings suggest that written language productivity (Price & Jackson, 496 2015) and dialect-neutral ungrammatical forms are reflective of general underlying language 497 498 ability. Production of longer written narratives suggests more fluent and less effortful writing, which in turn reflects stronger underlying expressive language skills. Similarly, use of few or no 499 500 forms that are ungrammatical both in AAE and standardized written GAE indicates strong 501 morphosyntactic knowledge, which also reflects higher underlying language ability. These dialect-neutral measures emerged as the key drivers of students' achievement, with the density of 502 503 AAE-specific morphosyntactic forms serving as correlates of, but not unique contributors to, 504 literacy performance. This may indicate that a reduced focus on AAE-specific form variation in

students' writing is warranted. Rather, pending further empirical study, practitioners and
researchers may find that African American students' writing development may be more
effectively supported through an emphasis on dialect-neutral forms that explicitly teach children
more nuanced rules, such as verb agreement in complex sentences, to encourage general
language development (Johnson & Gatlin-Nash, 2020).

510 Secondary Findings

Descriptively, the students produced highly variable written samples in terms of length (i.e., total number of t-units and number of total words) and lexical diversity (number of different words). Some of this variability may be attributable to the wide age range of the sample, as age was positively correlated with the language sampling measures. However, the samples were diverse not only in length and lexical diversity, but also in the rate at which AAE-specific and dialect-neutral forms occurred.

Examination of the rate at which AAE-specific (S-AAE) forms appeared in the written 517 518 samples revealed that the students in the present study used overall lower rates of S-AAE compared to those observed in studies of spoken language (e.g., Gatlin & Wanzek, 2015). This 519 finding is aligned with previous work indicating that African American individuals use S-AAE at 520 521 variable rates in different contexts (Charity et al., 2004), and that students typically use fewer AAE-specific forms in writing compared to oral language (Ivy & Masterson, 2011). We also 522 523 observed that density of S-AAE forms was negatively associated with income (all DDMs, Figure 524 1) and with age (at least for DDM_w). This finding is consistent with prior work indicating that students from higher income homes generally use S-AAE forms at lower densities than students 525 526 from lower income homes (Charity et al., 2004) and that older students tend to incorporate fewer 527 S-AAE forms in their writing compared to younger students (Ivy & Masterson, 2011).

Several S-AAE forms commonly observed in spoken language (e.g., use of *ain't* and 528 invariant be) were absent from the participants' written responses in the current study. This 529 530 potential discrepancy between samples of spoken and written language corroborates previous findings regarding context-dependency of S-AAE forms. Specifically, previous research purports 531 that students use AAE-specific forms differentially in their writing compared to their spoken 532 533 language (Cronnell, 2001; Ivy & Masterson, 2011). The AAE-specific forms observed to occur at high rates, such as zero form past tense -ed, reflected the past tense context of the prompt. 534 In considering prediction of academic achievement, the finding that household income 535 predicted achievement scores is consistent with a large body of literature suggesting children 536 from low socioeconomic backgrounds are at risk for disproportionately low academic 537 performance (Dietrichson et al., 2017) due to structural and systemic biases. Further, the finding 538 that language sample length and lexical diversity significantly predicted literacy scores is 539 540 consistent with research indicating that narrative language is important to reading development 541 (Gardner-Neblett & Iruka, 2015).

542 Limitations

543 To consider the results from the present work as accurately as possible, it is essential to 544 recognize that the complexity of language (and language variation) cannot be fully captured by coding approaches such as those used in the present work. We aimed to build upon prior work 545 546 that has examined dialect-specific grammatical forms in students' expressive language, and to 547 highlight the fact that both dialect-specific and dialect-neutral language ability have not often 548 been accounted for in models of reading development. Token-based coding by dialect is not an 549 easy task, however, because of the wide variation in individual dialectal exposure and use. 550 Further, we cannot know the exact reason for any given grammatical error or linguistic variation observed in students' writing samples. In the present study, for example, it is possible that some
forms that were coded as "dialect-neutral" were in fact consistent with individual students'
language experiences. It is simultaneously possible that some forms that were coded as "AAEspecific" were not consistent with students' specific dialectal backgrounds.
Contextually, the present findings were obtained from a sample of African American

557 We operationalized AAE-specific morphosyntactic forms based on prior work (Thompson et al.,

student participants who lived in the southern region of the United States, specifically in Florida.

558 2004; Washington & Craig, 2002), but no dialect is uniform across all speakers (e.g., Berry &

559 Oetting, 2017). Variable external factors can influence individual use of specific linguistic forms,

560 within and outside those specified in the present study. Future work would benefit from more

561 precise consideration of both within-dialect linguistic variation and written variation consistent

with AAE-specific phonological forms (Kohler et al., 2007; Patton-Terry & Connor, 2010). We

also recommend specific examination of dialect-neutral forms, based in a priori identification of

dialect-neutral forms that are ungrammatical. In the present work, we used a reverse-

identification approach, first identifying all instances of variations from standardized written

566 GAE and then categorizing forms based on their consistency with AAE. This may explain the

567 lower reliability observed for M-Neutral coding (95.9%) compared to S-AAE coding (97.4%).

568 Coders may have been more likely to categorize forms they were uncertain of as "other

569 grammatical variations" (a category only available for M-Neutral).

556

570 It is important to interpret the findings considering the statistical limitations of this work. 571 First, an inherent limitation of SEM is the inability to statistically compare equivalent models 572 (Kline, 2005). A different structure of the same variables (e.g., a mediation model) would 573 produce an equivalent fit to the data. Although additional structures were considered, at present 574 we believe that the tested model represented the closest fit with current theory. However, we 575 recognize that, as theory develops over time, alternative structures may more accurately 576 represents the relations among the included variables.

577 Missing data also may have influenced the results. It is reasonable to infer that the 578 primary results are relatively stable, given that the central finding replicated across all three 579 outcome measures. However, missing data particularly in students' FCAT, as a single indicator 580 in the model, reduced the statistical power to discern which predictors contributed significantly 581 to FCAT (high-stakes reading achievement) performance. Missing data for FAIR (progress 582 monitoring for reading) may be less concerning given the latent factor structure, which grants 583 some robustness to missing data.

The results are also limited by the available assessment data, including some measures 584 that were administered by parents (such as the Gates-MacGinitie Reading Tests). It should be 585 noted that the available measures assessed selected aspects that are among a constellation of 586 587 skills purported to contribute to literacy and academic achievement. It would be interesting in future studies to also consider the relation between other performance measures (such as 588 morphological knowledge). Further, it should be noted that a multitude of unmeasured factors 589 590 (e.g., approach to writing instruction, teacher-student dialect match) may have also contributed to variability or served a moderating role. 591

Finally, we encourage continued examination of dialect-neutral forms across
nonmainstream dialects. Although not within the scope of this paper, specification of which
linguistic forms maximally predict students' long-term language and reading abilities may be a
key area for future work. Different forms may be important to emphasize within different
instructional modalities (i.e., spoken versus written). This remains an area of need in the

26

literature to focus on maximizing educational outcomes for students from all backgrounds. A
holistic approach to the assessment of students' writing, considering both broad dialect-neutral
skills and dialect-specific forms together, may be essential to predicting students' academic
outcomes (Johnson & Gatlin-Nash, 2020; Puranik et al., 2019).

601 Implications for Practice

602 Our findings indicate that AAE, in and of itself, is not a barrier to written language development. Rather, general underlying language ability, as evidenced by the frequency of 603 604 occurrence of dialect-neutral ungrammatical forms, is a key indicator of how students will 605 perform on tasks such as those measured in this study. Therefore, it is important for SLPs and educators to leverage what we do know about dialectal variation to support speakers of AAE. 606 This work must be conducted using culturally sustaining pedagogies that acknowledge the social 607 context of systemic racism, both to support individual students' identities and to reduce linguistic 608 609 stigmatization (Baker-Bell et al., 2017; Wynter-Hoyte et al., 2019).

610 The relationship between general language skills, reading, and writing ability has been well documented over time (LARRC, 2015). While determining whether a student has a 611 language difference or a delay may be challenging, it is important to keep in mind that overlaps 612 613 can and do exist in students who are nonmainstream dialect speakers, those who have language delays, those from disadvantaged backgrounds, and those who have true language disorders. 614 615 Laing and Kamhi (2003) suggest our assessment practices for students from culturally and 616 linguistically marginalized populations should involve alternate measures, such as dynamic 617 assessment, language sampling (as used in this study) and processing-based tasks (e.g., working 618 memory, nonword repetition; Stockman, 2010). Measures such as these provide a wealth of 619 knowledge above and beyond what can be gleaned from standardized assessments alone. From

this assessment information, practitioners can then intervene by explicitly supporting students'
meta-awareness of morphosyntax through incorporating contrasts of AAE-specific and neutral
forms in different contexts, such as writing. This will help AAE speakers who also have

623 language deficits to increase their foundational language skills (Johnson & Gatlin-Nash, 2020).

624 Conclusions

625 Although several of the background variables included in this work did significantly predict students' reading achievement, a substantial amount of variance in scores remained 626 unexplained in the final model. Less than 30% of the variance in reading vocabulary and high-627 stakes reading scores and approximately 50% of the variance in FAIR reading was accounted for 628 in the structural model. These results support the ongoing need to better understand the language, 629 literacy, and overall academic development of students from all backgrounds. As practitioners 630 focus explicitly on strengthening students' general underlying language skills through an 631 emphasis on high-level, complex grammatical concepts (such as the dialect-neutral forms 632 633 mentioned in this study) and evidence-based reading instruction, we hope to see a rise in the reading performance of African American students. 634

635 Acknowledgements

636 The authors are grateful for the support of Dr. RaMonda Horton, who aided in the narrative

637 coding, literature review, and initial conceptualization and critical consideration of this work.

638 We are also grateful for the efforts of research assistants Sarah Harley, Joannie Descardes, Sierra

639 Chason, Jessica Clark, and Melanie Nagel. The research reported in this paper was supported by

640 the Eunice Kennedy Shriver National Institute of Child Health and Human Development,

641 National Institutes of Health (Award #P50HD052120). Views expressed herein are those of the

authors and have neither been reviewed nor approved by the granting agency.

References

644	Bahr, R. H., Silliman, E. R., Berninger, V. W., Dow, M., & Bird, K. (2012). Linguistic pattern
645	analysis of misspellings of typically developing writers in grades 1-9. Journal of Speech,
646	Language, and Hearing Research, 55, 1587–1600. https://doi.org/10.1044/1092-
647	4388(2012/10-0335)b
648	Baker-Bell, A. (2020). Dismantling anti-Black linguistic racism in English language arts
649	classrooms: Toward an anti-racist Black language pedagogy. Theory Into Practice, 59(1),
650	8-21. https://doi.org/10.1080/00405841.2019.1665415
651	Baker-Bell, A., Paris, D., & Jackson, D. (2017). Learning Black language matters: Humanizing
652	research as culturally sustaining pedagogy. International Review of Qualitative Research,
653	10(4), 360-377. https://doi.org/10.1525/irqr.2017.10.4.360
654	Berry, J. R., & Oetting, J. B. (2017). Dialect variation of copula and auxiliary verb BE: African
655	American English-speaking children with and without Gullah/Geechee heritage. Journal of
656	Speech, Language, and Hearing Research, 60(9), 2557–2568.
657	https://doi.org/10.1044/2017_JSLHR-L-16-0120
658	Bohrnstedt, G., Kitmitto, S., Ogut, B., Sherman, D., & Chan, D. (2015). School composition and
659	the Black-White achievement gap. NCES 2015-018. National Center for Education
660	Statistics, 36.
661	Brown, D. M. (2019). Teachers' and speech-language pathologists' perceptions of and
662	responses to students' African American English use within academic settings (Publication
663	No. 2019_Summer_Brown_fsu_0071E_15087) [Doctoral dissertation, Florida State
664	University]. DigiNole: FSU's Digital Repository.
665	Charity, A. H., Scarborough, H. S., & Griffin, D. M. (2004). Familiarity with school English in

- African American children and its relation to early reading achievement. *Child*
- 667 *Development*, 75(5), 1340–1356. https://doi.org/10.1111/j.1467-8624.2004.00744.x
- 668 Charity Hudley, A. H., Mallinson, C., Sudler, K., & Fama, M. (2018). The sociolinguistically
- trained speech-language pathologist: Using knowledge of African American English to aid
- and empower African American clientele. *Perspectives of the ASHA Special Interest*
- 671 *Groups*, *3*(1), 118–131. https://doi.org/10.1044/persp3.sig1.118
- 672 Chen, F., Curran, P., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of
- the use of fixed cutoff points in RMSEA test statistic in structural equation models.
- 674 Sociological Methods & Research, 36(4), 462–494.
- 675 https://doi.org/10.1177/0049124108314720.An
- 676 Christensen, K., Petersen, I., Skytthe, A., Herskind, A. M., McGue, M., & Bingley, P. (2006).
- 677 Comparison of academic performance of twins and singletons in adolescence: Follow-up
- 678 study. *British Medical Journal*, *333*(7578), 1095–1097.
- 679 https://doi.org/10.1136/bmj.38959.650903.7C
- 680 Connor, C. M., & Craig, H. K. (2006). African American preschoolers' language, emergent
- 681 literacy skills, and use of African American English: A complex relation. *Journal of Speech*
- 682 *Language and Hearing Research*, 49, 771–792. https://doi.org/1092-4388/06/4904-0771
- 683 Craig, H. K., Connor, C. M., & Washington, J. A. (2003). Early positive predictors of later
- reading comprehension for African American students: A preliminary investigation.
- 685 *Language, Speech, and Hearing Services in Schools*, *34*(1), 31–43.
- 686 https://doi.org/10.1044/0161-1461(2003/004)
- 687 Craig, H. K., Kolenic, G. E., & Hensel, S. L. (2014). African American English-speaking
- 688 students: A longitudinal examination of style shifting from kindergarten through second

- grade. Journal of Speech, Language, and Hearing Research, 57(1), 143–157.
- 690 https://doi.org/10.1044/1092-4388(2013/12-0157)
- 691 Craig, H. K., Thompson, C. A., Washington, J. A., & Potter, S. L. (2003). Phonological features
- 692 of child African American English. *Journal of Speech, Language, and Hearing Research*,
- 693 46, 623–635. https://doi.org/1092-4388/03/4603-0623
- Craig, H. K., & Washington, J. A. (2000). An assessment battery for identifying language
 impairments in African American children. *Journal of Speech, Language, and Hearing Research*, 43(2), 366–379. https://doi.org/10.1044/jslhr.4302.366
- 697 Craig, H. K., & Washington, J. A. (2002). Oral language expectations for African American
- preschoolers and kindergartners. *American Journal of Speech-Language Pathology*, *11*(1),
 59–70. https://doi.org/10.1044/1058-0360(2002/007)
- 700 Craig, H. K., Washington, J. A., & Thompson-Porter, C. (1998). Average C-unit lengths in the
- discourse of African American children from low-income, urban homes. *Journal of Speech*,
- 702 *Language, and Hearing Research, 41*(2), 433–444. https://doi.org/10.1044/jslhr.4102.433
- 703 Craig, H. K., & Washington, J. a. (2004). Grade-related changes in the production of African
- American English. *Journal of Speech, Language, and Hearing Research*, 47(April 2004),
 450–463.
- 706 Craig, H. K., Zhang, L., Hensel, S. L., & Quinn, E. J. (2009). African American English-
- speaking students: An examination of the relationship between dialect shifting and reading
- outcomes. *Journal of Speech, Language, and Hearing Research, 52, 839–855.*
- 709 https://doi.org/1092-4388/09/5204-0839
- 710 Cronnell, B. (2001). Black-English influences in the writing of third- and sixth-grade Black
- students. *Journal of Educational Research*, 77(4), 233–236.

- 712 Daucourt, M. C., Haughbrook, R., van Bergen, E., & Hart, S. A. (2020). The association of
- 713 parent-reported executive functioning, reading, and math is explained by nature, not
- nurture. *Developmental Psychology*, *56*(12), 2246–2261.
- 715 https://doi.org/10.1037/dev0001126
- 716 Dietrichson, J., Bøg, M., Filges, T., & Klint Jørgensen, A.-M. (2017). Academic interventions
- for elementary and middle school students with low socioeconomic status: A systematic
- review and meta-analysis. *Review of Educational Research*, 87(2), 243–282.
- 719 https://doi.org/10.3102/0034654316687036
- Dockrell, J. E., Ricketts, J., Charman, T., & Lindsay, G. (2014). Exploring writing products in
- students with language impairments and autism spectrum disorders. *Learning and*

722 *Instruction*, 32, 81–90. https://doi.org/10.1016/j.learninstruc.2014.01.008

- 723 Dovchin, S. (2020). Introduction to special issue: linguistic racism. *International Journal of*
- *Bilingual Education and Bilingualism*, 1–5.
- 725 https://doi.org/10.1080/13670050.2020.1778630
- Edwards, J. R., & Rosin, P. (2016). Prekindergarten curriculum supplement for enhancing
- 727 Mainstream American English knowledge in nonmainstream American English speakers.
- *Language, Speech, and Hearing Services in Schools, 47*(2).
- 729 https://doi.org/10.1044/2015_LSHSS-15-0011
- Fogel, H., & Ehri, L. C. (2000). Teaching elementary students who speak Black English
- 731 Vernacular to write in standard English: Effects of dialect transformation practice.
- 732 *Contemporary Educational Psychology*, 25(2), 212–235.
- 733 https://doi.org/10.1006/ceps.1999.1002
- Foorman, B. R., Torgesen, J., Crawford, E., & Petscher, Y. (2009). Assessments to guide reading

- instruction in K-12: Decisions supported by the new Florida system. *Perspectives on Language and Literacy*, *35*(5), 13–19.
- 737 Gardner-Neblett, N., & Iruka, I. U. (2015). Oral narrative skills: Explaining the language-
- emergent literacy link by race/ethnicity and SES. *Developmental Psychology*, 51(7), 889–
- 739 904. https://doi.org/10.1037/a0039274
- 740 Gatlin, B., & Wanzek, J. (2015). Relations among children's use of dialect and literacy skills: A
- 741 meta-analysis. *Journal of Speech, Language, and Hearing Research, 58*, 1306–1318.
- 742 https://doi.org/10.1044/2015_JSLHR-L-14-0311
- 743 Gatlin, B., & Wanzek, J. (2017). Elementary students' use of dialect and reading achievement:
- Examining students with disabilities. *Exceptional Children*, 84(1), 97–115.
- 745 https://doi.org/10.1177/0014402917727248
- Gatlin, B., Wanzek, J., & Al Otaiba, S. (2016). An examination of kindergarten oral language for
- 747 African American students: Are there meaningful differences in comparison to peers?
- 748 *Reading and Writing Quarterly*, *32*(5), 477–498.
- 749 https://doi.org/10.1080/10573569.2015.1039737
- 750 Hamilton, M.-B., Mont, E. V., & McLain, C. (2018). Deletion, omission, reduction: Redefining
- the language we use to talk about African American English. *Perspectives of the ASHA*
- 752 *Special Interest Groups*, *3*(1), 107–117. https://doi.org/10.1044/persp3.sig1.107
- Hendricks, A. E., & Adlof, S. M. (2017). Language assessment with children who speak
- nonmainstream dialects: Examining the effects of scoring modifications in norm-referenced
- assessment. *Language, Speech, and Hearing Services in Schools*, 48(3), 168–182.
- 756 https://doi.org/10.1044/2017_LSHSS-16-0060
- Hendricks, A. E., & Diehm, E. A. (2020). Survey of assessment and intervention practices for

758	students who speak African American English. Journal of Communication Disorders,
759	83(January 2019), 105967. https://doi.org/10.1016/j.jcomdis.2019.105967
760	Horton-Ikard, R. (2010). Language sample analysis with children who speak non-mainstream
761	dialects of English. Perspectives on Language Learning and Education, 17(1), 16–23.
762	https://doi.org/10.1044/lle17.1.16
763	Horton-Ikard, R., & Miller, J. F. (2004). It is not just the poor kids: The use of AAE forms by
764	African-American school-aged children from middle SES communities. Journal of
765	Communication Disorders, 37(6), 467-487. https://doi.org/10.1016/j.jcomdis.2004.02.001
766	Horton-Ikard, R., & Pittman, R. T. (2010). Examining the writing of adolescent African
767	American English speakers: Suggestions for assessment and intervention. Topics in
768	Language Disorders, 30(3), 189–204.
769	Ivy, L. J., & Masterson, J. J. (2011). A comparison of oral and written english styles in African
770	American students at different stages of writing development. Language, Speech, and
771	Hearing Services in Schools, 42(1), 31-40. https://doi.org/10.1044/0161-1461(2010/09-
772	0069)
773	Jencks, C. (1998). Racial bias in testing. In C. Jencks & M. Phillips (Eds.), The Black-White test
774	score gap (pp. 55-85). Brookings Institution. https://psycnet.apa.org/record/1998-06583-
775	001
776	Johnson, L., & Gatlin-Nash, B. (2020). Evidence-based practices in the assessment and
777	intervention of language-based reading difficulties among African American learners.
778	Perspectives on Language and Literacy, 46(2), 19–23.
779	https://cdn.coverstand.com/13959/662375/8c47ef2cb9a411651a334f27e7984625aaf58a91.p
780	df

- Johnson, L., Terry, N. P., Connor, C. M. D., & Thomas-Tate, S. (2017). The effects of dialect
- awareness instruction on nonmainstream American English speakers. *Reading and Writing*,
- 783 *30*(9), 2009–2038. https://doi.org/10.1007/s11145-017-9764-y
- Kline, R. B. (2011). *Principles and practice of structural equation modeling* (3rd ed.). Guilford
 Press.
- 786 Kohler, C. T., Bahr, R. H., Silliman, E. R., Bryant, J. B., Apel, K., & Wilkinson, L. C. (2007).
- 787 African American English dialect and performance on nonword spelling and phonemic
- awareness tasks. *American Journal of Speech-Language Pathology*, *16*(2), 157–160.
- 789 https://doi.org/10.1044/1058-0360(2007/020)
- Laing, S. P., & Kamhi, A. (2003). Alternative assessment of language and literacy in culturally
- and linguistically diverse populations. *Language, Speech, and Hearing Services in Schools*,
- 792 *34*(1), 44–55. https://doi.org/10.1044/0161-1461(2003/005)
- ⁷⁹³ Language and Reading Research Consortium (LARRC). (2015). The dimensionality of Spanish
- in young Spanish-English dual-language learners. *Journal of Speech, Language, and*
- 795 *Hearing Research*, 58, 754–766. https://doi.org/10.1044/2015_JSLHR-L-13-0266
- Latimer-Hearn, D. (2020). Don't get it twisted—Hear my voice. The ASHA Leader, 25(1), 54–
- 797 59. https://doi.org/10.1044/leader.FTR2.25012020.54
- Lee-James, R., & Washington, J. A. (2018). Language skills of bidialectal and bilingual children:
- 799 Considering a strengths-based perspective. *Topics in Language Disorders*, *38*(1), 5–26.
- 800 https://doi.org/10.1097/tld.00000000000142
- 801 MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and
- determination of sample size for covariance structure modeling. *Psychological Methods*,
- 803 *1*(2), 130–149. https://doi.org/10.1037/1082-989X.1.2.130

- MacGinitie, W., & MacGinitie, R. (2006). *Gates-MacGinitie Reading Tests (4th ed.)*. Houghton
 Mifflin.
- 806 Merolla, D. M., & Jackson, O. (2019). Structural racism as the fundamental cause of the
- academic achievement gap. *Sociology Compass*, *13*(6), 1–13.
- 808 https://doi.org/10.1111/soc4.12696
- 809 Miller, J. F., & Iglesias, A. (2017). Systematic Analysis of Language Transcripts (SALT)
- 810 (Research Version 18). SALT Software, LLC.
- 811 Moyle, M. J., Weismer, S. E., Evans, J. L., & Lindstrom, M. J. (2007). Longitudinal
- relationships between lexical and grammatical development in typical and late-talking
- children. *Journal of Speech, Language, and Hearing Research, 50*(2), 508–528.
- 814 https://doi.org/10.1044/1092-4388(2007/035)
- 815 Muthén, L. K., & Muthén, B. O. (2019). *Mplus user's guide* (Eighth). Muthén & Muthén.
- 816 National Center for Education Statistics. (2012). The nation's report card: Writing 2011. The
- 817 *Nation's Report Card: Writing 2011.* https://doi.org/NCES 2008–468
- 818 National Center for Education Statistics. (2019). *Technical summary of preliminary analyses of*
- 819 *NAEP 2017 Writing Assessments*. U.S. Department of Education.
- 820 https://nces.ed.gov/nationsreportcard/writing/2017writing.aspx
- 821 Oetting, J. B. (2019). Variability within varieties of English: Profiles of typicality and
- 822 impairment. In *Three Streams of Generative Language Acquisition Research* (pp. 59–82).
- John Benjamins. https://doi.org/10.1075/lald.63.04oet
- Oetting, J. B., Berry, J. R., Gregory, K. D., Rivière, A. M., & McDonald, J. (2019). Specific
- language impairment in African American English and Southern White English: Measures
- of tense and agreement with dialect-informed probes and strategic scoring. *Journal of*

- 827 Speech, Language, and Hearing Research, 62(9), 3443–3461.
- 828 https://doi.org/10.1044/2019_JSLHR-L-19-0089
- Oetting, J. B., Gregory, K. D., & Rivière, A. M. (2016). Changing how speech-language
- pathologists think and talk about dialect variation. *Perspectives of the ASHA Special*
- 831 *Interest Groups*, 1(16), 28–37. https://doi.org/10.1044/persp1.sig16.28
- 832 Oetting, J. B., & McDonald, J. L. (2002). Methods for characterizing participants'
- 833 nonmainstream dialect use in child language research. *Journal of Speech, Language, and*
- 834 *Hearing Research*, 45, 505–518.
- Patton-Terry, N., & Connor, C. (2010). African American english and spelling: How do second
- graders spell dialect-sensitive features of words? *Learning Disability Quarterly*, 33(3), 199–

837 210. https://doi.org/10.1177/073194871003300308

- Price, J. R., & Jackson, S. C. (2015). Procedures for obtaining and analyzing writing samples of
- school-age children and adolescents. *Journal of Speech, Language, and Hearing Research,*
- 840 24(2), 1–14. https://doi.org/10.1044/2015
- Pruitt, S., & Oetting, J. (2009). Past tense marking by African American English–speaking
- children reared in poverty. *Journal of Speech, Language, and Hearing Research, 52*, 2–15.
- 843 https://doi.org/10.1044/1092-4388(2008/07-0176)
- Puranik, C., Branum-Martin, L., & Washington, J. A. (2019). The relation between dialect
- density and the codevelopment of writing and reading in African American children. *Child Development*. https://doi.org/10.1111/cdev.13318
- 847 Reardon, S. F., Ho, A. D., Shear, B. R., Fahle, E. M., Kalogrides, D., Jang, H., Chavez, B.,
- Buontempo, J., & DiSalvo, R. (2019). *Stanford Education Data Archive* (Version 3.0).
- 849 http://purl.stanford.edu/db586ns4974

- Reardon, S. F., Kalogrides, D., & Shores, K. (2018). *The geography of racial/ethnic test score gaps* (CEPA Working Paper No. 16-10). http://cepa.stanford.edu/wp16-10
- 852 Rojas, R., & Iglesias, A. (2013). The language growth of Spanish-speaking English language
- 853 learners. *Child Development*, 84(2), 630–646. https://doi.org/10.1111/j.1467-
- 854 8624.2012.01871.x
- Satorra, A., & Bentler, P. M. (2010). Ensuring positiveness of the scaled difference chi-square
 test statistic. *Psychometrika*, 75(2), 243–248. https://doi.org/10.1007/s11336-009-9135-y
- 857 Schachter, R. E., & Craig, H. K. (2013). Students' production of narrative and AAE features
- during an emergent literacy task. *Language, Speech, and Hearing Services in Schools*, 44,
- 859 227–238. https://doi.org/10.1044/0161-1461(2013/12-0034)
- 860 Scott, C. M., & Windsor, J. (2000). General language performance measures in spoken and
- 861 written narrative and expository discourse of school-age children with language learning

disabilities. *Journal of Speech, Language, and Hearing Research, 43*, 324–339.

- Siegel, J. (1999). Stigmatized and standardized varieties in the classroom: Interference or
- separation? *TESOL Quarterly*, *33*(4), 701. https://doi.org/10.2307/3587883
- 865 Stockman, I. J. (2010). A review of developmental and applied language research on African
- 866 American children: From a deficit to difference perspective on dialect differences.
- *Language, Speech, and Hearing Services in Schools, 41*(1), 23–38.
- 868 https://doi.org/10.1044/0161-1461(2009/08-0086)
- 869 Taylor, J. E., Martinez, K., & Hart, S. A. (2019). The Florida State twin registry. *Twin Research*
- and Human Genetics, 22(6), 728–730. https://doi.org/https://doi.org/10.1017/thg.2019.102
- 871 Terry, N. P. (2006). Relations between dialect variation, grammar, and early spelling skills.
- 872 *Reading and Writing*, *19*(9), 907–931. https://doi.org/10.1007/s11145-006-9023-0

- 873 Terry, N. P. (2014). Dialect variation and phonological knowledge: Phonological representations
- and metalinguistic awareness among beginning readers who speak nonmainstream
- American English. *Applied Psycholinguistics*, *35*(1), 155–176.
- 876 https://doi.org/10.1017/S0142716412000276
- 877 Terry, N. P., Connor, C. M. D., Johnson, L., Stuckey, A., & Tani, N. (2016). Dialect variation,
- dialect-shifting, and reading comprehension in second grade. *Reading and Writing*, 29(2),

879 267–295. https://doi.org/10.1007/s11145-015-9593-9

- 880 Terry, N. P., Connor, C. M., Petscher, Y., & Conlin, C. R. (2012). Dialect variation and reading:
- Is change in Nonmainstream American English use related to reading achievement in first
- and second grades? *Journal of Speech, Language, and Hearing Research*, 55, 55–69.
- 883 https://doi.org/10.1044/1092-4388(2011/09-0257)
- 884 Terry, N. P., Connor, C. M., Thomas-Tate, S., & Love, M. (2010). Examining relationships
- among dialect variation, literacy skills, and school context in first grade. *Journal of Speech*,

Language, and Hearing Research, 53, 126–146.

- 887 Terry, N. P., Gatlin, B., & Johnson, L. (2018). Same or different: How bilingual readers can help
- us understand bidialectal readers. *Topics in Language Disorders*, 38(1), 50–65.
- 889 https://doi.org/10.1097/TLD.00000000000141
- 890 Thomas, E. R. (2007). Phonological and phonetic characteristics of African American
- 891 Vernacular English. *Language and Linguistics Compass*, *1*(5), 450–475.
- 892 https://doi.org/10.1111/j.1749-818X.2007.00029.x
- 893 Thompson, C. A., Craig, H. K., & Washington, J. A. (2004). Variable production of African
- American English across oracy and literacy contexts. *Language, Speech, and Hearing*
- 895 *Services in Schools*, *35*(3), 269–282. https://doi.org/10.1044/0161-1461(2004/025)

- 896 Wagner, R. K., Puranik, C. S., Foorman, B., Foster, E., Wilson, L. G., Tschinkel, E., & Kantor,
- P. T. (2011). Modeling the development of written language. *Reading and Writing*, 24(2),
- 898 203–220. https://doi.org/10.1007/s11145-010-9266-7
- Walker, S. O., Petrill, S. A., Spinath, F. M., & Plomin, R. (2004). Nature, nurture and academic
- achievement: A twin study of teacher assessments of 7-year-olds. *British Journal of*
- 901 *Educational Psychology*, 74(3), 323–342. https://doi.org/10.1348/0007099041552387
- 902 Washington, J. A., Branum-Martin, L., Lee-James, R., & Sun, C. (2019). Reading and language
- 903 performance of low-income, African American boys in grades 1-5. *Reading and Writing*
- 904 *Quarterly*, *35*(1), 42–64. https://doi.org/10.1080/10573569.2018.1535777
- 905 Washington, J. A., Branum-Martin, L., Sun, C., & Lee-James, R. (2018). The impact of dialect
- 906 density on the growth of language and reading in African American children. *Language*,
- 907 Speech, and Hearing Services in Schools, 49(2), 232–247.
- 908 https://doi.org/10.1044/2018_LSHSS-17-0063
- 909 Washington, J. A., & Craig, H. K. (2002). Morphosyntactic forms of African American English
- used by young children and their caregivers. *Applied Psycholinguistics*, 23(2), 209–231.
- 911 https://doi.org/10.1017/S0142716402002035
- 912 Wolfram, W. (2004). *The grammar of urban African American Vernacular English*.
- 913 http://faculty.winthrop.edu/kosterj/ENGL507/assignments/WolframUrban_AAE.pdf
- 914 Wynter-Hoyte, K., Braden, E. G., Rodriguez, S., & Thornton, N. (2019). Disrupting the status
- 915 quo: exploring culturally relevant and sustaining pedagogies for young diverse learners.
- 916 *Race Ethnicity and Education*, 22(3), 428–447.
- 917 https://doi.org/10.1080/13613324.2017.1382465
- 918

921

920 Participant Demographics by Child

Characteristic	%	п	Characteristic	%	п
Child Grade (<i>n</i> = 207)	Household Income (<i>n</i> = 194)				
1 st Grade	7.7	16	Less than \$10,000/yr	15.5	30
2 nd Grade	10.6	22	\$10,000 - 29,000/yr	26.3	51
3 rd Grade	9.2	19	\$30,000 - 49,000/yr	16.5	32
4 th Grade	9.7	20	\$50,000 - 69,000/yr	16.5	32
5 th Grade	11.1	23	\$70,000 - 89,000/yr	6.2	12
6 th Grade	15.0	31	More than \$90,000/yr	19.1	37
7 th Grade	22.7	47	Child Lunch Status (n =	= 149)	
8 th Grade	14.0	29	Free or Reduced	71.1	106
Child Gender $(n = 207)$			No Free/Reduced	28.9	43
Female	51.2	106			
Male	48.8	101			

Sample Descriptives

Cha	aracteristic			Full Sample		
		п	М	SD	Min	Max
S-A	AE Forms	207	2.38	3.31	0	22
M-1	Neutral Forms	207	10.85	9.25	0	55
Age	e (years)	207	11.49	2.39	6.75	15.33
Lan	guage Sample Microstructure Me	easures				
	TNU	207	17.41	13.52	1	104
	MLTU (morphemes)	207	9.35	2.99	4.2	30
	NDW	207	75.57	43.78	10	267
	NTW	207	144.37	104.23	12	753
Ach	ievement Measures					
	GMRT-4	199	517.71	51.04	350	653
	FCAT	104	222.13	23.46	153	272
-	Reading Comprehension	95	94.52	12.36	72	131
FAIR1	Maze	94	94.26	13.46	71	131
F_{A}	Word Analysis	93	96.63	14.77	60	127
7	Reading Comprehension	92	95.89	12.90	69	144
FAIR2	Maze	89	99.83	14.86	74	140
F^{A}	Word Analysis	88	95.57	15.60)	63	133
3	Reading Comprehension	87	100.05	14.49	73	155
FAIR3	Maze	87	101.56	15.36	77	140
FA	Word Analysis	84	96.40	14.88	60	138

Note. S-AAE = African American English-specific morphosyntactic forms; M-Neutral = dialect neutral forms; TNU = Total number t-units; MLTU = mean length of t-unit in morphemes; NDW = number different words; NTW = number total words; GMRT = Gates-MacGinitie Reading Tests (reading vocabulary), 4th Edition; FCAT = Florida's Comprehensive Assessment Test; FAIR1 = Florida Assessments for Instruction in Reading fall 2012; FAIR2 = FAIR winter 2012; FAIR3 = FAIR spring 2013; Maze = reading fluency; WA = word analysis

Grade n	14	S-A	AE	M-Ne	eutral	TN	NU	MLT	'U-m	NI	W	NI	W
Graue	n	М	SD	М	SD	М	SD	М	SD	М	SD	М	SD
1	16	1.62	1.89	9.38	5.43	8.12	3.16	7.13	2.51	31.94	12.28	53.00	25.64
2	22	1.55	2.26	11.27	10.48	13.36	10.08	7.59	1.58	50.41	34.37	98.36	80.80
3	19	1.89	1.66	8.89	7.29	10.63	5.04	8.63	1.77	47.63	17.76	86.21	44.25
4	20	2.70	4.61	11.55	8.65	19.95	9.82	8.69	2.40	80.20	27.30	153.55	67.28
5	23	2.35	1.85	11.13	6.66	20.43	11.33	9.37	2.04	87.96	36.41	174.04	91.60
6	31	2.68	3.53	11.52	10.67	21.23	16.68	10.04	4.42	87.87	47.75	169.97	117.41
7	47	3.40	4.71	12.47	11.77	19.47	16.32	10.00	2.93	87.36	44.08	169.49	121.49
8	29	1.55	1.57	8.59	6.92	18.48	14.69	11.00	2.50	91.72	53.12	169.86	112.99

Writing Sample Descriptive Statistics by Grade

Note. S-AAE = African American English-specific morphosyntactic forms; M-Neutral = dialect neutral forms; TNU = Total number tunits; MLTU = mean length of t-unit in morphemes; NDW = number different words; NTW = number total words.

Form	Occurrences Per Sample <i>M</i> (<i>SD</i>)	Form	Occurrences Per Sample <i>M</i> (<i>SD</i>)
Zero form past tense -ed	1.07 (1.75)	Zero form present progressive -ing	0.04 (0.23)
Zero form plural -s	0.43 (1.05)	Double marking	0.03 (0.20)
Subject-verb shifts	0.34 (0.85)	Existential <i>it</i>	0.03 (0.20)
Preterite had	0.29 (0.64)	Multiple negation	0.03 (0.16)
Zero form articles	0.27 (0.59)	Undifferentiated pronoun case	0.01 (0.12)
Zero form copula	0.21 (0.65)	Fitna/sposeta/bouta	0.01 (0.08)
Zero form possessive -s	0.19 (0.65)	Remote past been	0
Zero form infinitive to	0.11 (0.33)	Regularized reflexive pronoun	0
Indefinite article a	0.07 (0.33)	Invariant <i>be</i>	0
Zero form prepositions	0.06 (0.24)	Double copula / auxiliary / modal	0
Zero form auxiliary	0.05 (0.23)	Use of <i>ain't</i>	0
Appositive pronouns	0.05 (0.24)	Completive <i>done</i>	0

AAE-Specific Morphosyntactic Forms Appearing in the Written Samples

Form	Evenue	00	ple	
Foffii	Example(s)	М	SD	Range
Homophone substitution	She took there their books away.	2.67	2.73	0-17
Non-seriation run-on sentences	(2+ clauses not connected with a conjunction)	1.88	2.19	0 - 14
Whole-word omission	My brothers against each other.	1.24	2.00	0-14
Tense change (not contextually indicated)	Everyone says hello, then she gave me a gift.	0.70	1.21	0-6
Seriation "then and then"	(3+ independent clauses in a row beginning with a conjunction)	0.52	0.98	0-4
Whole-word addition	The wings were the tipped with brown.	0.46	0.85	0-4
Regularization of past tense -ed ¹	I lefted my keys there.	0.03	0.19	0 - 2
Other grammatical variations	I wish cats can fly. I saw she yesterday. An geese chase the cat.	3.36	4.28	0-23

¹Although not included in all lists of grammatical forms specific to AAE, regularization of past tense *-ed* may be considered an AAE-specific form (e.g., Pruitt & Oetting, 2009; Wolfram, 2004). We conducted sensitivity analyses with and without *-ed* regularization included in the statistical models. Findings did not differ based on the classification of this specific form.

Figure 1 Correlations Among Z-Scored Variables

Income -	-0.254***	-0.243***	-0.191**	-0.163*	-0.173*	-0.177*	0.102	0.136	0.075	0.153*	0.443***	0.486***	0.608***	0.432***	
FAIR RC 1	-0.303**	-0.295**	-0.337***	-0.211*	-0.215*	-0.253*	0.248*	0.313**	0.211*	0.407***	0.622***	0.426***	0.498***		
FAIR MA 1 -	-0.360***	-0.375***	-0.387***	-0.240*	-0.261*	-0.310**	0.247*	0.302**	0.216*	0.296**	0.635***	0.590***			
FAIR WA 1 -	-0.389***	-0.389***	-0.441***	-0.279**	-0.269**	-0.301**	0.163	0.219*	0.098	0.337**	0.520***				
FCAT -	-0.368***	-0.365***	-0.381***	-0.312***	-0.330***	-0.389***	0.146	0.224*	0.102	0.530***					
GRMT-4 Vocab -	-0.391***	-0.386***	-0.395***	-0.207**	-0.202**	-0.228**	0.147*	0.207**	0.131						
TNU -	-0.225**	-0.227**	-0.142*	-0.095	-0.092	-0.042	0.946***	0.903***							
NDW -	-0.278***	-0.275***	-0.264***	-0.108	-0.103	-0.100	0.969***								
NTW-	-0.232***	-0.231***	-0.219**	-0.087	-0.083	-0.072									
DDMw-	0.335***	0.336***	0.283***	0.944***	0.955***										
DDMt -	0.368***	0.373***	0.242***	0.990***											
DDMd -	0.372***	0.377***	0.246***												
Neutral-w -	0.865***	0.870***													
Neutral-t -	0.992***														
Neutral-d -															
	Neutral-d	Neutral-t	Neutral-w	DDMd	DDMt	DDMw	NTW	NDW	TNU G	RMT-4 Voc	ab FCAT	FAIR WA 1	FAIR MA 1	FAIR RC 1	Income

p* <.05, *p*<.01, ****p* <.001

Note. FCAT = Florida's Comprehensive Assessment Test (Reading); GMRT-4 = Gates-MacGinitie Reading Tests, 4th Ed.; RC1 = Reading comprehension on Florida Assessment for Instruction in Reading (FAIR) in fall 2012; M1 = Maze (reading fluency) on FAIR in fall 2012; WA1 = word analysis (spelling) on FAIR in fall 2012; TNU = total number of t-units; MLUm = mean length of t-unit; NDW = number of different words; NTW = number of total words; DDM values are density measures for AAE-specific morphosyntactic forms (S-AAE); Neutral values are density measures for dialect-neutral forms (M-Neutral)

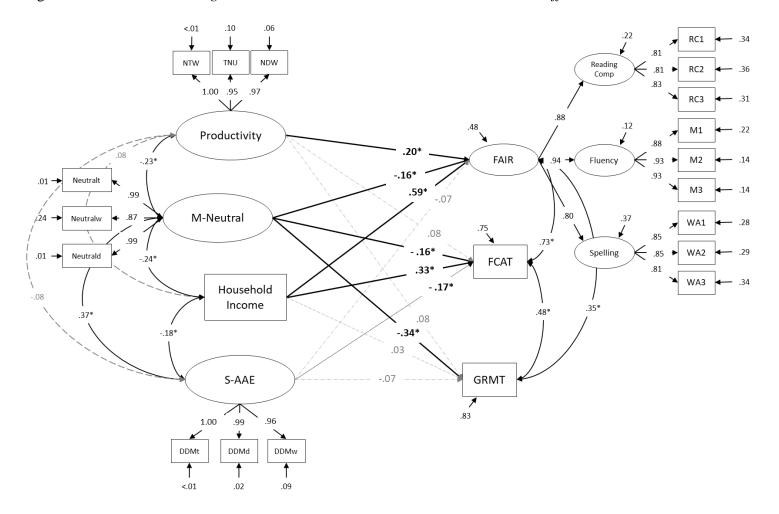


Figure 2 Full Model Including All Outcome Measures with Standardized Path Coefficients

Note. Solid lines indicate significant paths (p < .05). NTW = number of total words; TNU = total number of t-units; NDW = number of different words; DDM values are density measures for AAE-specific morphosyntactic forms (S-AAE); NM values are density measures for dialect-neutral forms (M-Neutral); RC = reading comprehension; Maze = reading fluency; WA = word analysis; 1 = score in fall 2012; 2 = score in winter 2013; 3 = score in spring 2013; FCAT = Florida's Comprehensive Assessment Test (Reading); GMRT = Gates-MacGinitie Reading Tests-4th Edition.

Table S1 Sample Descriptives by Group

Characteristic		Students with at least one S-AAE Form in Writing			tudents with no Forms in Wr		Full Sample			
	п	M(SD)	Min - Max	п	$M\left(SD\right)$	Min - Max	п	M(SD)	Min - Max	
M-Neutral Forms	150	12.44 (9.91)	0 - 55	57	6.67 (5.42)	0 - 27	207	10.85 (9.25)	0 - 55	
Age (years)	150	11.65 (2.30)	6.75 - 15.00	57	11.10 (2.58)	6.75 - 15.33	207	11.49 (2.39)	6.75 – 15.33	
Income ¹	139	3.53 (2.16)	1 - 9	55	3.40 (1.94)	1 - 8	194	3.49 (2.09)	1 - 9	
Language Sampling Meas	sures									
TNU	150	19.61 (14.60)	1 - 104	57	11.63 (7.64)	1 - 36	207	17.41 (13.52)	1 - 104	
MLTU (morphemes)	150	9.27 (2.54)	4.33 - 22	57	9.54 (3.96)	4.2 - 30	207	9.35 (2.99)	4.2 - 30	
NDW	150	83.51 (45.60)	10 - 267	57	54.67 (30.09)	11 - 120	207	75.57 (43.78)	10 - 267	
NTW	150	162.39 (111.17)	13 – 753	57	96.96 (62.66)	12 - 273	207	144.37 (104.23)	12 - 753	
Achievement Measures										
GMRT-4	143	517.27 (50.96)	350 - 653	56	518.84 (51.68)	387 - 653	199	517.71 (51.04)	350 - 653	
FCAT	81	221.38 (24.42)	153 - 272	23	224.74 (19.94)	177 - 252	104	222.13 (23.46)	153 - 272	
- Reading Comp	73	93.92 (12.83)	72 - 131	22	96.50 (10.67)	78 - 117	95	94.52 (12.36)	72 - 131	
Haze Reading Comp	72	94.28 (13.72)	71 - 131	22	94.18 (12.89)	71 - 122	94	94.26 (13.46)	71 - 131	
🗄 Word Analysis	72	96.69 (15.86)	60 - 127	21	96.43 (10.51)	81 - 118	93	96.63 (14.77)	60 - 127	
N Reading Comp	70	96.33 (13.24)	69 – 144	22	94.50 (11.95)	72 - 112	92	95.89 (12.90)	69 – 144	
Neading Comp Maze Word Analysis	68	99.72 (15.28)	74 - 140	21	100.19 (13.78)	77 – 131	89	99.83 (14.86)	74 - 140	
🛱 Word Analysis	68	95.82 (15.81)	63 – 133	20	94.70 (15.25)	66 - 129	88	95.57 (15.60)	63 – 133	
∞ Reading Comp	66	99.86 (15.67)	73 – 155	21	100.62 (10.21)	82 - 116	87	100.05 (14.49)	73 – 155	
Word Analysis	66	101.53 (15.46)	77 - 140	21	101.67 (15.43)	81 – 131	87	101.56 (15.36)	77 - 140	
역 ^또 Word Analysis	64	97.36 (15.92)	60 - 138	20	93.35 (10.67)	76 – 114	84	96.40 (14.88)	60 - 138	

¹On a 1-12 scale, with 1 = *less than \$10,000/year* and each 1-unit increase representing \$19,000. S-AAE = African American English-specific morphosyntactic forms; M-Neutral = dialect neutral forms relative to standard written English; TNU = Total number t-units; MLTU = mean length of t-unit in morphemes; NDW = number different words; NTW = number total words; GMRT = Gates-MacGinitie Reading Tests (reading vocabulary), 4th Edition; FCAT = Florida's Comprehensive Assessment Test; FAIR1 = Florida Assessments for Instruction in Reading fall 2012; FAIR2 = FAIR winter 2012; FAIR3 = FAIR spring 2013; RC = reading comprehension; Maze = reading fluency; WA = word analysis

Table S2

Standardized	Factor	Loadings	from	Factor	Models

Factor	Variables	Factor Loadings	SE	р	R ²
	DDMt	1.00			1.00
AAE-Specific Forms (S-AAE)	DDMd	0.99	0.01	<.001	0.98
(S-AAE)	DDMw	0.96	0.01	<.001	0.91
	Neutral _t	1.00	0.01		1.00
Dialect Neutral Forms (M-Neutral)	Neutral _w	0.87	0.02	<.001	0.76
(WI-INCULIAI)	Neutral _d	0.99	0.01	<.001	0.99
	NTW	1.00			1.00
Writing Productivity	TNU	0.95	0.02	<.001	0.90
	NDW	0.97	0.01	<.001	0.94
	WA1	0.85	0.05	<.001	0.72
Spelling	WA2	0.85	0.04	<.001	0.72
	WA3	0.81	0.06	<.001	0.66
	M1	0.88	0.03	<.001	0.78
Fluency	M2	0.93	0.02	<.001	0.86
	M3	0.93	0.02	<.001	0.86
	RC1	0.81	0.05	<.001	0.66
Reading Comprehension	RC2	0.81	0.04	<.001	0.65
	RC3	0.83	0.04	<.001	0.69
	Fluency	0.94	0.04	<.001	0.87
FAIR	Spelling	0.80	0.06	<.001	0.63
	Reading	0.88	0.05	<.001	0.78