When Real Life Happens: A Practical Approach to Interpreting & Conducting Rigorous Research Session #: 1059 Day/Time: Thursday, November 17, 2016 at 1:30pm Location: CC/201B

Authors: Lisa Fitton, Autumn McIlraith, Carla Wood, Emily Diehm, Jennifer Brown, & Suzanne Adlof

Additional Recommended Resources

TEXTBOOKS

- Kazdin, A. E. (2011). *Single-case research designs: Methods for clinical and applied settings* (2nd ed.). New York, NY: Oxford University Press.
- Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). *Experimental and quasi-experimental designs for generalized causal inference*. Boston: Houghton Mifflin
- Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.) New York, NY: Guilford Press.
- Raudenbush, S. W., & Bryk, A. S. (2002). *Hierarchical linear models: Applications and data analysis methods* (2nd ed.). Thousand Oaks, CA: Sage Publications.
- Thompson, B. (2004). *Exploratory and confirmatory factor analysis: Understanding concepts and applications*. Washington, DC: American Psychological Association.

ONLINE RESOURCES

- Logan, J. (2016). I am statistics, and so can you [Web blog]. Retrieved from http://statsineducation.tumblr.com/
- What Works Clearinghouse (2014). *Procedures and standards handbook version 3.0*. Retrieved from ies.ed.gov/ncee/wwc/Docs/referenceresources/wwc_procedures _v3_0_standards_handbook.pdf
- Magnusson, K. Interpreting correlations: An interactive visualization. [Web page]. Retrieved from http://rpsychologist.com/d3/correlation/
- Garbin, C. Cal's resource archive. [Web page]. Retrieved from http://psych.unl.edu/psycrs/Resource.html

PAPERS (more technical)

- Wood, C., McIlraith, A., & Fitton, L. (2016). State of practice for language and literacy research: A review of methods in ten relevant journals. *Contemporary Issues in Communication Science and Disorders, 43*, 195-207. doi: 1092-5171/16/4302-0195
- Ioannidis, J. (2005). Why most published research findings are false. *PLoS Medicine, 2*(8), 0696-0701. doi: 10.1371/journal.pmed.0020124
- O'Dwyer, L. M., & Parker, C. E. (2014). A primer for analyzing nested data: Multilevel modeling in SPSS using an example from a REL study (REL 2015-046). Washington, DC: U.S. Dept of Education, Inst of Edu Sci, National Center for Edu Eval and Regional Assist, Regional Edu Lab Northeast & Islands. Retrieved from http://ies.ed.gov/ncee/edlabs
- Petscher, Y. (2016). Do our means of inquiry match our intentions? *Frontiers in Psychology*, 7:1048. doi:10.3389/fpsyg.2016.01048
- Sharpe, D. (2013). Why the resistance to statistical innovations? Bridging the communication gap. *Psychological Methods*, *18*(4), 572-582. doi: 10.1037/a0034177

	Cheat Sheet: Evaluating Research Designs and Statistical Analyses				
	When it's helpful	When it's not as helpful	Things to watch out for		
Randomized Controlled Trial	 To test an intervention that's shown promise in smaller studies To generalize your results to a large, diverse population As the "gold standard" for causal claims about an intervention's effectiveness 	 When resources are limited (time, money, personnel, participants) When intervention cannot be ethically withheld from any participants To isolate individual responses to intervention To study the influence of factors you cannot change 	 Was true random assignment used? Are there issues with the control group not remaining a true control? Were there enough participants for randomization to be effective? 		
Single-Case Design	 To test new intervention ideas With low-incidence populations When resources are limited 	 To generalize your results to a large, diverse population To evaluate more established interventions 	 Is there a reasonable baseline period? (e.g., ~ 5 time points) Did the baseline period convince you the participant(s) exhibited stable performance prior to intervention? Is there replication of the observed effect? (3 or more instances) 		
Quasi-Experimental Design	 To study the influence of factors you cannot change (e.g., gender, SES, (dis)ability status When it would be unethical to withhold treatment from a control group 	 To make strong causal claims To generalize your results to a large, diverse population 	 How strong is the counterfactual (if there is one)? Are there any signs of experimenter bias? Was a pretest used to examine pre-existing differences between groups? Over-reaching on the conclusions? 		

	When it's helpful	When it's not as helpful	Things to watch out for
Structural Equation Modeling	 To study many interrelated factors at the same time To determine the "most important" predictors To get a better view of the big picture 	 With smaller sample sizes When few variables are available 	 Be wary of claims about directionality of relationships: not a sure thing How is the model fit? Are there individual sampling issues? Is there possible masking of real effects?
Hierarchical Linear Modeling	 When data have a nested structure (e.g., students nested within schools; or many time points nested within person) With larger sample sizes 	 With smaller sample sizes With fewer than 10 higher-level units (e.g., schools) 	 Does the unit of assignment match the unit of analysis? Are the assumptions met? Has missing data been handled properly, and reported?